Do you want to publish a course? Click here

Quantum Scalar Corrections to the Gravitational Potentials on de Sitter Background

84   0   0.0 ( 0 )
 Added by Richard Woodard
 Publication date 2015
  fields Physics
and research's language is English
 Authors Sohyun Park




Ask ChatGPT about the research

We employ the graviton self-energy induced by a massless, minimally coupled (MMC) scalar on de Sitter background to compute the quantum corrections to the gravitational potentials of a static point particle with a mass $M$. The Schwinger-Keldysh formalism is used to derive real and causal effective field equations. When evaluated at the one-loop order, the gravitational potentials exhibit a secular decrease in the observed gravitational coupling $G$. This can also be interpreted as a (time dependent) anti-screening of the mass $M$.



rate research

Read More

191 - Katie E. Leonard 2014
We derive a noncovariant but simple representation for the self-energy of a conformally transformed graviton field on the cosmological patch of de Sitter. Our representation involves four structure functions, as opposed to the two that would be necessary for a manifestly de Sitter invariant representation. We work out what the four structure functions are for the one loop correction due to a massless, minimally coupled scalar. And we employ the result to work out what happens to dynamical gravitons.
We exploit a recent computation of one graviton loop corrections to the self-mass [1] to quantum-correct the field equation for a massless, conformally coupled scalar on a de Sitter background. With the obvious choice for the finite part of the $R^2 phi^2$ counterterm, we find that neither plane wave mode functions nor the response to a point source acquires large infrared logarithms. However, we do find a decaying logarithmic correction to the mode function and a short distance logarithmic running of the potential in addition to the power-law effect inherited from flat space.
We employ a recent, general gauge computation of the one loop graviton contribution to the vacuum polarization on de Sitter to solve for one loop corrections to the photon mode function. The vacuum polarization takes the form of a gauge independent, spin 2 contribution and a gauge dependent, spin 0 contribution. We show that the leading secular corrections derive entirely from the spin 2 contribution.
It is known that the perturbative instability of tensor excitations in higher derivative gravity may not take place if the initial frequency of the gravitational waves are below the Planck threshold. One can assume that this is a natural requirement if the cosmological background is sufficiently mild, since in this case the situation is qualitatively close to the free gravitational wave in flat space. Here, we explore the opposite situation and consider the effect of a very far from Minkowski radiation-dominated or de Sitter cosmological background with a large Hubble rate, e.g., typical of an inflationary period. It turns out that, then, for initial Planckian or even trans-Planckian frequencies, the instability is rapidly suppressed by the very fast expansion of the universe.
199 - D. Glavan 2015
We evaluate the one-graviton loop contribution to the vacuum polarization on de Sitter background in a 1-parameter family of exact, de Sitter invariant gauges. Our result is computed using dimensional regularization and fully renormalized with BPHZ counterterms, which must include a noninvariant owing to the time-ordered interactions. Because the graviton propagator engenders a physical breaking of de Sitter invariance two structure functions are needed to express the result. In addition to its relevance for the gauge issue this is the first time a covariant gauge graviton propagator has been used to compute a noncoincident loop. A number of identities are derived which should facilitate further graviton loop computations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا