A Kalman filter package has been developed for reconstructing muon ($mu^pm$) tracks (coming from the neutrino interactions) in ICAL detector. Here, we describe the algorithm of muon track fitting, with emphasis on the error propagation of the elements of Kalman state vector along the muon trajectory through dense materials and inhomogeneous magnetic field. The higher order correction terms are included for reconstructing muon tracks at large zenith angle $theta$ (measured from the perpendicular to the detector planes). The performances of this algorithm and its limitations are discussed.
The magnetised Iron CALorimeter detector (ICAL), proposed to be built at the India-based Neutrino Observatory (INO), is designed to study atmospheric neutrino oscillations. The ICAL detector is optimized to measure the muon momentum, its direction and charge. A GEANT4-based package has been developed by the INO collaboration to simulate the ICAL geometry and propagation of particles through the detector. The simulated muon tracks are reconstructed using the Kalman Filter algorithm. Here we present the first study of the response of the ICAL detector to muons using this simulations package to determine the muon momentum and direction resolutions as well as their reconstruction and charge identification efficiencies. For 1-20 GeV/c muons in the central region of the detector, we obtain an average angle-dependent momentum resolution of 9-14%, an angular resolution of about a degree, reconstruction efficiency of about 80% and a correct charge identification of about 98%.
The magnetized Iron CALorimeter detector (ICAL) which is proposed to be built in the India-based Neutrino Observatory (INO) laboratory, aims to study atmospheric neutrino oscillations primarily through charged current interactions of muon neutrinos and anti-neutrinos with the detector. The response of muons and charge identification efficiency, angle and energy resolution as a function of muon momentum and direction are studied from GEANT4-based simulations in the peripheral regions of the detector. This completes the characterisation of ICAL with respect to muons over the entire detector and has implications for the sensitivity of ICAL to the oscillation parameters and mass hierarchy compared to the studies where only the resolutions and efficiencies of the central region of ICAL were assumed for the entire detector. Selection criteria for track reconstruction in the peripheral region of the detector were determined from the detector response. On applying these, for the 1--20 GeV energy region of interest for mass hierarchy studies, an average angle-dependent momentum resolution of 15--24%, reconstruction efficiency of about 60--70% and a correct charge identification of about 97% of the reconstructed muons were obtained. In addition, muon response at higher energies upto 50 GeV was studied as relevant for understanding the response to so-called rock muons and cosmic ray muons. An angular resolution of better than a degree for muon energies greater than 4 GeV was obtained in the peripheral regions, which is the same as that in the central region.
The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.
We describe algorithms developed to isolate and accurately reconstruct two-track events that are contained within the MicroBooNE detector. This method is optimized to reconstruct two tracks of lengths longer than 5 cm. This code has applications to searches for neutrino oscillations and measurements of cross sections using quasi-elastic-like charged current events. The algorithms we discuss will be applicable to all detectors running in Fermilabs Short Baseline Neutrino program (SBN), and to any future liquid argon time projection chamber (LArTPC) experiment with beam energies ~1 GeV. The algorithms are publicly available on a GITHUB repository. This reconstruction offers a complementary and independent alternative to the Pandora reconstruction package currently in use in LArTPC experiments, and provides similar reconstruction performance for two-track events.
We present an alternative implementation of the Kalman filter employed for track fitting within the LHCb experiment. It uses simple parametrizations for the extrapolation of particle trajectories in the field of the LHCb dipole magnet and for the effects of multiple scattering in the detector material. A speedup of more than a factor of four is achieved while maintaining the quality of the estimated track quantities. This Kalman filter implementation could be used in the purely software-based trigger of the LHCb upgrade.
Kolahal Bhattacharya
,Arnab K. Pal
,Gobinda Majumder
.
(2015)
.
"Error Propagation of the Track Model and Track Fitting Strategy for the Iron CALorimeter Detector in India-based Neutrino Observatory"
.
Kolahal Bhattacharya
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا