No Arabic abstract
The influence of additional information on the decision making of agents, who are interacting members of a society, is analyzed within the mathematical framework based on the use of quantum probabilities. The introduction of social interactions, which influence the decisions of individual agents, leads to a generalization of the quantum decision theory developed earlier by the authors for separate individuals. The generalized approach is free of the standard paradoxes of classical decision theory. This approach also explains the error-attenuation effects observed for the paradoxes occurring when decision makers, who are members of a society, consult with each other, increasing in this way the available mutual information. A precise correspondence between quantum decision theory and classical utility theory is formulated via the introduction of an intermediate probabilistic version of utility theory of a novel form, which obeys the requirement that zero-utility prospects should have zero probability weights.
An essential task of groups is to provide efficient solutions for the complex problems they face. Indeed, considerable efforts have been devoted to the question of collective decision-making related to problems involving a single dominant feature. Here we introduce a quantitative formalism for finding the optimal distribution of the group members competences in the more typical case when the underlying problem is complex, i.e., multidimensional. Thus, we consider teams that are aiming at obtaining the best possible answer to a problem having a number of independent sub-problems. Our approach is based on a generic scheme for the process of evaluating the proposed solutions (i.e., negotiation). We demonstrate that the best performing groups have at least one specialist for each sub-problem -- but a far less intuitive result is that finding the optimal solution by the interacting group members requires that the specialists also have some insight into the sub-problems beyond their unique field(s). We present empirical results obtained by using a large-scale database of citations being in good agreement with the above theory. The framework we have developed can easily be adapted to a variety of realistic situations since taking into account the weights of the sub-problems, the opinions or the relations of the group is straightforward. Consequently, our method can be used in several contexts, especially when the optimal composition of a group of decision-makers is designed.
We propose a model of mobile agents to construct social networks, based on a system of moving particles by keeping track of the collisions during their permanence in the system. We reproduce not only the degree distribution, clustering coefficient and shortest path length of a large data base of empirical friendship networks recently collected, but also some features related with their community structure. The model is completely characterized by the collision rate and above a critical collision rate we find the emergence of a giant cluster in the universality class of two-dimensional percolation. Moreover, we propose possible schemes to reproduce other networks of particular social contacts, namely sexual contacts.
We study the design of learning architectures for behavioural planning in a dense traffic setting. Such architectures should deal with a varying number of nearby vehicles, be invariant to the ordering chosen to describe them, while staying accurate and compact. We observe that the two most popular representations in the literature do not fit these criteria, and perform badly on an complex negotiation task. We propose an attention-based architecture that satisfies all these properties and explicitly accounts for the existing interactions between the traffic participants. We show that this architecture leads to significant performance gains, and is able to capture interactions patterns that can be visualised and qualitatively interpreted. Videos and code are available at https://eleurent.github.io/social-attention/.
We consider the psychological effect of preference reversal and show that it finds a natural explanation in the frame of quantum decision theory. When people choose between lotteries with non-negative payoffs, they prefer a more certain lottery because of uncertainty aversion. But when people evaluate lottery prices, e.g. for selling to others the right to play them, they do this more rationally, being less subject to behavioral biases. This difference can be explained by the presence of the attraction factors entering the expression of quantum probabilities. Only the existence of attraction factors can explain why, considering two lotteries with close utility factors, a decision maker prefers one of them when choosing, but evaluates higher the other one when pricing. We derive a general quantitative criterion for the preference reversal to occur that relates the utilities of the two lotteries to the attraction factors under choosing versus pricing and test successfully its application on experiments by Tversky et al. We also show that the planning paradox can be treated as a kind of preference reversal.
Quantum Decision Theory, advanced earlier by the authors, and illustrated for lotteries with gains, is generalized to the games containing lotteries with gains as well as losses. The mathematical structure of the approach is based on the theory of quantum measurements, which makes this approach relevant both for the description of decision making of humans and the creation of artificial quantum intelligence. General rules are formulated allowing for the explicit calculation of quantum probabilities representing the fraction of decision makers preferring the considered prospects. This provides a method to quantitatively predict decision-maker choices, including the cases of games with high uncertainty for which the classical expected utility theory fails. The approach is applied to experimental results obtained on a set of lottery gambles with gains and losses. Our predictions, involving no fitting parameters, are in very good agreement with experimental data. The use of quantum decision making in game theory is described. A principal scheme of creating quantum artificial intelligence is suggested.