Do you want to publish a course? Click here

Report from the Multi-Messenger Working Group at UHECR-2014 Conference

85   0   0.0 ( 0 )
 Added by Daniel Kuempel
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The IceCube, Pierre Auger and Telescope Array Collaborations have recently reported results on neutral particles (neutrons, photons and neutrinos) which complement the measurements on charged primary cosmic rays at ultra-high energy. The complementarity between these messengers and between their detections are outlined. The current status of their search is reviewed and a cross-correlation analysis between the available results is performed. The expectations for photon and neutrino detections in the near future are also presented.



rate research

Read More

We present a summary of the measurements of mass sensitive parameters at the highest cosmic ray energies done by several experiments. The Xmax distribution as a function of energy has been measured with fluorescence telescopes by the HiRes, TA and Auger experiments and with Cherenkov light detectors by Yakutsk. The <Xmax> or the average mass (<lnA>) has been also inferred using ground detectors, such as muon and water Cherenkov detectors. We discuss the different data analyses elaborated by each collaboration in order to extract the relevant information. Special attention is given to the different approaches used in the analysis of the data measured by fluorescence detectors in order to take into account detector biases. We present a careful analysis of the stability and performance of each analysis. The results of the different experiments will be compared and the discrepancies or agreements will be quantified.
The current status of searches for ultra-high energy neutrinos and photons using air showers is reviewed. Regarding both physics and observational aspects, possible future research directions are indicated.
The study of ultra-high energy cosmic rays (UHECRs) has recently experienced a jump in statistics as well as improved instrumentation. This has allowed a better sensitivity in searching for anisotropies in the arrival directions of cosmic rays. In this written version of the presentation given by the inter-collaborative Anisotropy Working Group at the International Symposium on Future Directions in UHECR physics at CERN in February 2012, we report on the current status for anisotropy searches in the arrival directions of UHECRs.
355 - Weimin Yuan 2015
This white paper is a summarising report of the Forum on monitoring the transient X-ray Universe in the multi-messenger era organized by the International Space Science Institute in Beijing (ISSI-BJ) on May 6-7, 2014. Time-domain astronomy will enter a golden era towards the end of this decade with the advent of major facilities across the electromagnetic spectrum and in the multi-messenger realms of gravitational wave and neutrino. In the soft X-ray regime, the novel micro-pore lobster-eye optics provides a promising technology to realise, for the first time, focusing X-ray optics for wide-angle monitors to achieve a good combination of sensitivity and wide field of view. In this context, Einstein Probe - a soft X-ray all-sky monitor - has been proposed and selected as a candidate mission of priority in the space science programme of the Chinese Academy of Sciences. This report summarises the most important science developments in this field towards 2020 and beyond and how to achieve them technologically, which were discussed at this brainstorming forum. It also introduces briefly the Einstein Probe mission, including its key science goals and mission definition, as well as some of the key technological issues.
The report summarizes the results of the activities of the Working Group on Precision Calculations for the Z Resonance at CERN during 1994.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا