Do you want to publish a course? Click here

Associated production of a top pair and a Higgs boson beyond NLO

201   0   0.0 ( 0 )
 Added by Alessandro Broggio
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We consider soft gluon emission corrections to the production of a top-antitop pair in association with a Higgs boson at hadron colliders. In particular, we present a soft-gluon resummation formula for this production process and gather all elements needed to evaluate it at next-to-next-to-leading logarithmic order. We employ these results to obtain approximate next-to-next-to-leading order (NNLO) formulas, and implement them in a bespoke parton-level Monte Carlo program which can be used to calculate the total cross section along with arbitrary differential distributions. We use this tool to study the phenomenological impact of the approximate NNLO corrections, finding that they increase the total cross section and the differential distributions which we evaluated in this work.



rate research

Read More

We present an NLO simulation of WWbb production with massive b-quarks at the LHC. Off-shell and non-resonant contributions associated with top-pair and single-top channels and with leptonic W-boson decays are consistently taken into account using the complex-mass scheme. Thanks to the finite b-quark mass, WWbb predictions can be extended to the whole b-quark phase space, thereby including Wt-channel single-top contributions that originate from collinear g->bb splittings in the four-flavour scheme. This provides a consistent NLO description of tt and Wt production and decay, including quantum interference effects. The simulation is also applicable to exclusive 0- and 1-jet bins, which is of great importance for Higgs-boson studies in the H->WW channel and for any other analysis with large top backgrounds and jet vetoes or jet bins.
We study the resummation of soft gluon emission corrections to the production of a top-antitop pair in association with a Higgs boson at the Large Hadron Collider. Starting from a soft-gluon resummation formula derived in previous work, we develop a bespoke parton-level Monte Carlo program which can be used to calculate the total cross section along with differential distributions. We use this tool to study the phenomenological impact of the resummation to next-to-next-to-leading logarithmic (NNLL) accuracy, finding that these corrections increase the total cross section and the differential distributions with respect to NLO calculations of the same observables.
134 - Xiaofeng Xu , Li Lin Yang 2018
We propose that loop integrals with internal heavy particles can be evaluated by expanding in the limit of small external masses. This provides a systematically improvable approximation to the integrals in the entire phase space, and works particularly well for the high energy tails of kinematic distributions (where the usual $1/M$ expansions cease to be valid). We demonstrate our method using Higgs boson pair production as an example. We find that at both one-loop and two-loop, our method provides good approximations to the integrals appearing in the scattering amplitudes. Comparing to existing expansion methods, our method are not restricted to a special phase space region. Combining our efficient method to compute the two-loop amplitude with an infrared subtraction method for the real emission corrections, we expect to have a fast and reliable tool to calculate the differential cross sections for Higgs boson pair production. This will be useful for phenomenological studies and for the extraction of the Higgs self-coupling from future experimental data. Our method can also be applied to other processes, such as the associated production of the Higgs boson with a jet or a $Z$ boson.
We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.
We discuss the calculation of charged Higgs boson production in association with top quark in the MC@NLO framework for combining NLO matrix elements with a parton shower. The process is defined in a model independent manner for wide applicability, and can be used if the charged Higgs boson mass is either greater or less than the mass of the top quark. For the latter mass region, care is needed in defining the charged Higgs production mode due to interference with top pair production. We give a suitable definition applicable in an NLO (plus parton shower) context, and present example results for the LHC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا