We present angle resolved photoemission spectra for Cu(100) and Cu(111) singly crystals in normal emission geometry, taken at tightly spaced intervals for photon energies between 8 eV and 150 eV. This systematic collection of spectra gives unprecedented insight into the influence of the final states to the photoemission process as well as the band structure and lifetimes of highly excited electrons in Cu.
We present angle resolved photoemission spectra for Ag(111) and Au(111) single crystals in normal emission geometry, taken at closely spaced intervals for photon energies between 8 eV and 160 eV. The most dominant transitions observed are attributed to f-derived final states located about 16 eV to 17 eV above EF for both materials. These transitions exhibit very distinct resonance phenomena and selection rules and are reminiscent of the angular momentum characteristics of the states involved. The excited electron lifetime is in the attosecond (as) range as determined from the energy width of the observed transitions. This serves as an alternate approach to the direct determination of excited electron lifetimes by as laser spectroscopy.
Continuing the photoemission study begun with the work of Opeil et al. [Phys. Rev. B textbf{73}, 165109 (2006)], in this paper we report results of an angle-resolved photoemission spectroscopy (ARPES) study performed on a high-quality single-crystal $alpha$-uranium at 173 K. The absence of surface-reconstruction effects is verified using X-ray Laue and low-energy electron diffraction (LEED) patterns. We compare the ARPES intensity map with first-principles band structure calculations using a generalized gradient approximation (GGA) and we find good correlations with the calculated dispersion of the electronic bands.
We combined a spin-resolved photoemission spectrometer with a high-harmonic generation (HHG) laser source in order to perform spin-, time- and angle-resolved photoemission spectroscopy (STARPES) experiments on the transition metal dichalcogenide bulk WTe$_2$, a possible Weyl type-II semimetal. Measurements at different femtosecond pump-probe delays and comparison with spin-resolved one-step photoemission calculations provide insight into the spin polarization of electrons above the Fermi level in the region where Weyl points of WTe$_2$ are expected. We observe a spin accumulation above the Weyl points region, that is consistent with a spin-selective bottleneck effect due to the presence of spin polarized cone-like electronic structure. Our results support the feasibility of STARPES with HHG, which despite being experimentally challenging provides a unique way to study spin dynamics in photoemission.
Angle-resolved photoemission spectroscopy (ARPES), an experimental technique based on the photoelectric effect, is arguably the most powerful method for probing the electronic structure of solids. The past decade has witnessed notable progress in ARPES, including the rapid development of soft-X-ray ARPES, time-resolved ARPES, spin-resolved ARPES and spatially resolved ARPES, as well as considerable improvements in energy and momentum resolution. Consequently , ARPES has emerged as an indispensable experimental probe in the study of topological materials, which have characteristic non-trivial bulk and surface electronic structures that can be directly detected by ARPES. Over the past few years, ARPES has had a crucial role in several landmark discoveries in topological materials, including the identification of topological insulators and topological Dirac and Weyl semimetals. In this Technical Review , we assess the latest developments in different ARPES techniques and illustrate the capabilities of these techniques with applications in the study of topological materials.
Angle resolved photoelectron spectroscopy (ARPES) is extensively used to characterize the dependence of the electronic structure of graphene on Ir(111) on the preparation process. ARPES findings reveal that temperature programmed growth alone or in combination with chemical vapor deposition leads to graphene displaying sharp electronic bands. The photoemission intensity of the Dirac cone is monitored as a function of the increasing graphene area. Electronic features of the moire superstructure present in the system, namely minigaps and replica bands are examined and used as robust features to evaluate graphene uniformity. The overall dispersion of the pi-band is analyzed. Finally, by the variation of photon energy, relative changes of the pi- and sigma-band intensities are demonstrated.
Friedrich Roth
,Cosmin Lupulescu
,Erik Darlatt
.
(2015)
.
"Angle resolved Photoemission from Cu single crystals; Known Facts and a few Surprises about the Photoemission Process"
.
Friedrich Roth
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا