Do you want to publish a course? Click here

Generation of c{hi}2 solitons from the Airy wave through the parametric instability

140   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spontaneous creation of solitons in quadratic media by the downconversion, i.e., parametric instability against the generation of fundamental-frequency excitations, from the truncated Airy-wave (AW) mode in the second-harmonic component is studied. Parameter regions are identified for the generation of one, two, and three solitons, with additional small-amplitude jets. Shares of the total power carried by individual solitons are found. Also considered are soliton patterns generated by the downconversion from a pair of AWs bending in opposite directions.



rate research

Read More

Conversion of truncated Airy waves (AWs) carried by the second-harmonic (SH) component into axisymmetric $chi^{2}$ solitons is considered in the 2D system with the quadratic nonlinearity. The spontaneous conversion is driven by the parametric instability of the SH wave. The input in the form of the AW vortex is considered too. As a result, one, two, or three stable solitons emerge in a well-defined form, unlike the recently studied 1D setting, where the picture is obscured by radiation jets. Shares of the total power captured by the emerging solitons and conversion efficiency are found as functions of parameters of the AW input.
We investigate numerically the interactions of two in-phase and out-of-phase Airy beams and nonlinear accelerating beams in Kerr and saturable nonlinear media, in one transverse dimension. We find that bound and unbound soliton pairs, as well as single solitons, can form in such interactions. If the interval between two incident beams is large relative to the width of their first lobes, the generated soliton pairs just propagate individually and do not interact. However, if the interval is comparable to the widths of the maximum lobes, the pairs interact and display varied behavior. In the in-phase case, they attract each other and exhibit stable bound, oscillating, and unbound states, after shedding some radiation initially. In the out-of-phase case, they repel each other and after an initial interaction, fly away as individual solitons. While the incident beams display acceleration, the solitons or soliton pairs generated from those beams do not.
Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems ranging from biology to galaxies build-up. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems based on a periodic antiphase modulation of spectrally-dependent losses arranged in a zig-zag way: an effective filtering is imposed at symmetrically located wavenumbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of the both key classical concepts of modulation instabilities: the Benjamin-Feir, and the Faraday instability. We demonstrate how dissipative parametric instability can lead to the formation of stable patterns in one and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems.
We have investigated the propagation dynamics of the circular Airy Gaussian vortex beams (CAGVBs) in a (2+1)-dimesional optical system discribed by fractional nonlinear Schrodinger equation (FNSE). By combining fractional diffraction with nonlinear effects, the abruptly autofocusing effect becomes weaker, the radius of the focusing beams becomes bigger and the autofocusing length will be shorter with increase of fractional diffraction Levy index. It has been found that the abruptly autofocusing effect becomes weaker and the abruptly autofocusing length becomes longer if distribution factor of CAGVBs increases for fixing the Levy index. The roles of the input power and the topological charge in determining the autofocusing properties are also discussed. Then, we have found the CAGVBs with outward acceleration and shown the autodefocusing properties. Finally, the off-axis CAGVBs with positive vortex pairs in the FNSE optical system have shown interesting features during propagation.
The long-term behavior of a modulationally unstable conservative nonintegrable system is known to be characterized by the soliton turbulence self-organization process. We consider this problem in the presence of a long-range interaction in the framework of the Schrodinger-Poisson (or Newton-Schrodinger) equation accounting for the gravitational interaction. By increasing the amount of nonlinearity, the system self-organizes into a large-scale incoherent localized structure that contains hidden coherent soliton states: The solitons can hardly be identified in the usual spatial or spectral domains, while their existence is unveiled in the phase-space representation (spectrogram). We develop a theoretical approach that provides the coupled description of the coherent soliton component (governed by an effective Schrodinger-Poisson equation) and of the incoherent component (governed by a wave turbulence Vlasov-Poisson equation). The theory shows that the incoherent structure introduces an effective trapping potential that stabilizes the hidden coherent soliton, a mechanism that we verify by direct numerical simulations. The theory characterizes the properties of the localized incoherent structure, such as its compactly supported spectral shape. It also clarifies the quantum-to-classical correspondence in the presence of gravitational interactions. This study is of potential interest for self-gravitating Boson models of fuzzy dark matter. Although we focus our paper on the Schrodinger-Poisson equation, we show that our results are general for long-range wave systems characterized by an algebraic decay of the interacting potential. This work should stimulate nonlinear optics experiments in highly nonlocal nonlinear (thermal) media that mimic the long-range nature of gravitational interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا