Do you want to publish a course? Click here

Magnetic and gaseous spiral arms in M83

64   0   0.0 ( 0 )
 Added by Rainer Beck
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Isotropic and anisotropic wavelet transforms are used to decompose the images of the spiral galaxy M83 in various tracers to quantify structures in a range of scales from 0.2 to 10 kpc. We used radio polarization observations at {lambda}6 cm and 13 cm obtained with the VLA, Effelsberg and ATCA telescopes and APEX sub-mm observations at 870 {mu}m, which are first published here, together with maps of the emission of warm dust, ionized gas, molecular gas, and atomic gas. The spatial power spectra are similar for the tracers of dust, gas, and total magnetic field, while the spectra of the ordered magnetic field are significantly different. The wavelet cross-correlation between all material tracers and total magnetic field is high, while the structures of the ordered magnetic field are poorly correlated with those of other tracers. -- The magnetic field configuration in M83 contains pronounced magnetic arms. Some of them are displaced from the corresponding material arms, while others overlap with the material arms. The magnetic field vectors at {lambda}6 cm are aligned with the outer material arms, while significant deviations occur in the inner arms and in the bar region, possibly due to non-axisymmetric gas flows. Outside the bar region, the typical pitch angles of the material and magnetic spiral arms are very close to each other at about 10{deg}. The typical pitch angle of the magnetic field vectors is about 20{deg} larger than that of the material spiral arms. One of the main magnetic arms in M83 is displaced from the gaseous arms, while the other main arm overlaps a gaseous arm. We propose that a regular spiral magnetic field generated by a mean-field dynamo is compressed in material arms and partly aligned with them. The interaction of galactic dynamo action with a transient spiral pattern is a promising mechanism for producing such complicated spiral patterns as in M83.



rate research

Read More

238 - G. Bertin , N. C. Amorisco 2009
Context: Several spiral galaxies, as beautifully exhibited by the case of NGC 6946, display a prominent large-scale spiral structure in their gaseous outer disk. Such structure is often thought to pose a dynamical puzzle, because grand-design spiral structure is traditionally interpreted as the result of density waves carried mostly in the stellar disk. Aims. Here we argue that the outer spiral arms in the cold gas outside the bright optical disk actually have a natural interpretation as the manifestation of the mechanism that excites grand-design spiral structure in the main, star-dominated body of the disk: the excitation is driven by angular momentum transport to the outer regions, through trailing density waves outside the corotation circle that can penetrate beyond the Outer Lindblad Resonance in the gaseous component of the disk. Methods: Because of conservation of the density wave action, these outgoing waves are likely to become more prominent in the outer disk and eventually reach non-linear amplitudes. To calculate the desired amplitude profiles, we make use of the theory of dispersive waves. Results: If the conditions beyond the optical radius allow for an approximate treatment in terms of a linear theory, we show that fitting the observed amplitude profiles leads to a quantitative test on the density of the disk material and thus on the dark matter distribution in the outer parts of the galaxy. Conclusions: This study is thus of interest to the general problem of the disk-halo decomposition of rotation curves.
We present CI 3P1-3P0 spectra at four spiral arm positions and the nuclei of the nearby galaxies M83 and M51 obtained at the JCMT. This data is complemented with maps of CO 1-0, 2-1, and 3-2, and ISO/LWS far-infrared data of CII (158 micron), OI (63 micron), and NII (122 micron) allowing for the investigation of a complete set of all major gas cooling lines. From the intensity of the NII line, we estimate that between 15% and 30% of the observed CII emission originate from the dense ionized phase of the ISM. The analysis indicates that emission from the diffuse ionized medium is negligible. In combination with the FIR dust continuum, we find gas heating efficiencies below ~0.21% in the nuclei, and between 0.25 and 0.36% at the outer positions. Comparison with models of photon-dominated regions (PDRs) of Kaufman et al. (1999) with the standard ratios OI(63)/CII_PDR and (OI(63)+CII_PDR) vs. TIR, the total infrared intensity, yields two solutions. The physically most plausible solution exhibits slightly lower densities and higher FUV fields than found when using a full set of line ratios, CII_PDR/CI(1-0), CI(1-0)/CO(3-2), CO(3-2)/CO(1-0), CII/CO(3-2), and, OI(63)/CII_PDR. The best fits to the latter ratios yield densities of 10^4 cm^-3 and FUV fields of ~G_0=20-30 times the average interstellar field without much variation. At the outer positions, the observed total infrared intensities are in perfect agreement with the derived best fitting FUV intensities. The ratio of the two intensities lies at 4-5 at the nuclei, indicating the presence of other mechanisms heating the dust.
199 - D. Moss , R. Beck , D. Sokoloff 2013
Context. Observations of polarized radio emission show that large-scale (regular) magnetic fields in spiral galaxies are not axisymmetric, but generally stronger in interarm regions. In some nearby galaxies such as NGC 6946 they are organized in narrow magnetic arms situated between the material spiral arms. Aims. The phenomenon of magnetic arms and their relation to the optical spiral arms (the material arms) call for an explanation in the framework of galactic dynamo theory. Several possibilities have been suggested but are not completely satisfactory; here we attempt a consistent investigation. Methods. We use a 2D mean-field dynamo model in the no-z approximation and add injections of small-scale magnetic field, taken to result from supernova explosions, to represent the effects of dynamo action on smaller scales. This injection of small scale field is situated along the spiral arms, where star-formation mostly occurs. Results. A straightforward explanation of magnetic arms as a result of modulation of the dynamo mechanism by material arms struggles to produce pronounced magnetic arms, at least with realistic parameters, without introducing new effects such as a time lag between Coriolis force and {alpha}-effect. In contrast, by taking into account explicitly the small-scale magnetic field that is injected into the arms by the action of the star forming regions that are concentrated there, we can obtain dynamo models with magnetic structures of various forms that can be compared with magnetic arms. (abbrev). Conclusions. We conclude that magnetic arms can be considered as coherent magnetic structures generated by large-scale dynamo action, and associated with spatially modulated small-scale magnetic fluctuations, caused by enhanced star formation rates within the material arms.
(Abridged) We use new multi-wavelength radio observations, made with the VLA and Effelsberg telescopes, to study the magnetic field of the nearby galaxy M51 on scales from $200pc$ to several $kpc$. Interferometric and single dish data are combined to obtain new maps at wwav{3}{6} in total and polarized emission, and earlier wav{20} data are re-reduced. We compare the spatial distribution of the radio emission with observations of the neutral gas, derive radio spectral index and Faraday depolarization maps, and model the large-scale variation in Faraday rotation in order to deduce the structure of the regular magnetic field. We find that the wav{20} emission from the disc is severely depolarized and that a dominating fraction of the observed polarized emission at wav{6} must be due to anisotropic small-scale magnetic fields. Taking this into account, we derive two components for the regular magnetic field in this galaxy: the disc is dominated by a combination of azimuthal modes, $m=0+2$, but in the halo only an $m=1$ mode is required to fit the observations. We disuss how the observed arm-interarm contrast in radio intensities can be reconciled with evidence for strong gas compression in the spiral shocks. The average arm--interam contrast, representative of the radii $r>2kpc$ where the spiral arms are broader, is not compatible with straightforward compression: lower arm--interarm contrasts than expected may be due to resolution effects and emph{decompression} of the magnetic field as it leaves the arms. We suggest a simple method to estimate the turbulent scale in the magneto-ionic medium from the dependence of the standard deviation of the observed Faraday rotation measure on resolution. We thus obtain an estimate of $50pc$ for the size of the turbulent eddies.
81 - Peeter Tenjes 2017
Aims: Density waves are often considered as the triggering mechanism of star formation in spiral galaxies. Our aim is to study relations between different star formation tracers (stellar UV and near-IR radiation and emission from HI, CO and cold dust) in the spiral arms of M31, to calculate stability conditions in the galaxy disc and to draw conclusions about possible star formation triggering mechanisms. Methods: We select fourteen spiral arm segments from the de-projected data maps and compare emission distributions along the cross sections of the segments in different datasets to each other, in order to detect spatial offsets between young stellar populations and the star forming medium. By using the disc stability condition as a function of perturbation wavelength and distance from the galaxy centre we calculate the effective disc stability parameters and the least stable wavelengths at different distances. For this we utilise a mass distribution model of M31 with four disc components (old and young stellar discs, cold and warm gaseous discs) embedded within the external potential of the bulge, the stellar halo and the dark matter halo. Each component is considered to have a realistic finite thickness. Results: No systematic offsets between the observed UV and CO/far-IR emission across the spiral segments are detected. The calculated effective stability parameter has a minimal value Q_{eff} ~ 1.8 at galactocentric distances 12 - 13 kpc. The least stable wavelengths are rather long, with the minimal values starting from ~ 3 kpc at distances R > 11 kpc. Conclusions: The classical density wave theory is not a realistic explanation for the spiral structure of M31. Instead, external causes should be considered, e.g. interactions with massive gas clouds or dwarf companions of M31.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا