Do you want to publish a course? Click here

Prominent spiral arms in the gaseous outer galaxy disks

238   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: Several spiral galaxies, as beautifully exhibited by the case of NGC 6946, display a prominent large-scale spiral structure in their gaseous outer disk. Such structure is often thought to pose a dynamical puzzle, because grand-design spiral structure is traditionally interpreted as the result of density waves carried mostly in the stellar disk. Aims. Here we argue that the outer spiral arms in the cold gas outside the bright optical disk actually have a natural interpretation as the manifestation of the mechanism that excites grand-design spiral structure in the main, star-dominated body of the disk: the excitation is driven by angular momentum transport to the outer regions, through trailing density waves outside the corotation circle that can penetrate beyond the Outer Lindblad Resonance in the gaseous component of the disk. Methods: Because of conservation of the density wave action, these outgoing waves are likely to become more prominent in the outer disk and eventually reach non-linear amplitudes. To calculate the desired amplitude profiles, we make use of the theory of dispersive waves. Results: If the conditions beyond the optical radius allow for an approximate treatment in terms of a linear theory, we show that fitting the observed amplitude profiles leads to a quantitative test on the density of the disk material and thus on the dark matter distribution in the outer parts of the galaxy. Conclusions: This study is thus of interest to the general problem of the disk-halo decomposition of rotation curves.



rate research

Read More

63 - P. Frick , R. Stepanov , R. Beck 2015
Isotropic and anisotropic wavelet transforms are used to decompose the images of the spiral galaxy M83 in various tracers to quantify structures in a range of scales from 0.2 to 10 kpc. We used radio polarization observations at {lambda}6 cm and 13 cm obtained with the VLA, Effelsberg and ATCA telescopes and APEX sub-mm observations at 870 {mu}m, which are first published here, together with maps of the emission of warm dust, ionized gas, molecular gas, and atomic gas. The spatial power spectra are similar for the tracers of dust, gas, and total magnetic field, while the spectra of the ordered magnetic field are significantly different. The wavelet cross-correlation between all material tracers and total magnetic field is high, while the structures of the ordered magnetic field are poorly correlated with those of other tracers. -- The magnetic field configuration in M83 contains pronounced magnetic arms. Some of them are displaced from the corresponding material arms, while others overlap with the material arms. The magnetic field vectors at {lambda}6 cm are aligned with the outer material arms, while significant deviations occur in the inner arms and in the bar region, possibly due to non-axisymmetric gas flows. Outside the bar region, the typical pitch angles of the material and magnetic spiral arms are very close to each other at about 10{deg}. The typical pitch angle of the magnetic field vectors is about 20{deg} larger than that of the material spiral arms. One of the main magnetic arms in M83 is displaced from the gaseous arms, while the other main arm overlaps a gaseous arm. We propose that a regular spiral magnetic field generated by a mean-field dynamo is compressed in material arms and partly aligned with them. The interaction of galactic dynamo action with a transient spiral pattern is a promising mechanism for producing such complicated spiral patterns as in M83.
(Abridged) We use new multi-wavelength radio observations, made with the VLA and Effelsberg telescopes, to study the magnetic field of the nearby galaxy M51 on scales from $200pc$ to several $kpc$. Interferometric and single dish data are combined to obtain new maps at wwav{3}{6} in total and polarized emission, and earlier wav{20} data are re-reduced. We compare the spatial distribution of the radio emission with observations of the neutral gas, derive radio spectral index and Faraday depolarization maps, and model the large-scale variation in Faraday rotation in order to deduce the structure of the regular magnetic field. We find that the wav{20} emission from the disc is severely depolarized and that a dominating fraction of the observed polarized emission at wav{6} must be due to anisotropic small-scale magnetic fields. Taking this into account, we derive two components for the regular magnetic field in this galaxy: the disc is dominated by a combination of azimuthal modes, $m=0+2$, but in the halo only an $m=1$ mode is required to fit the observations. We disuss how the observed arm-interarm contrast in radio intensities can be reconciled with evidence for strong gas compression in the spiral shocks. The average arm--interam contrast, representative of the radii $r>2kpc$ where the spiral arms are broader, is not compatible with straightforward compression: lower arm--interarm contrasts than expected may be due to resolution effects and emph{decompression} of the magnetic field as it leaves the arms. We suggest a simple method to estimate the turbulent scale in the magneto-ionic medium from the dependence of the standard deviation of the observed Faraday rotation measure on resolution. We thus obtain an estimate of $50pc$ for the size of the turbulent eddies.
It has been believed that spirals in pure stellar disks, especially the ones spontaneously formed, decay in several galactic rotations due to the increase of stellar velocity dispersions. Therefore, some cooling mechanism, for example dissipational effects of the interstellar medium, was assumed to be necessary to keep the spiral arms. Here we show that stellar disks can maintain spiral features for several tens of rotations without the help of cooling, using a series of high-resolution three-dimensional $N$-body simulations of pure stellar disks. We found that if the number of particles is sufficiently large, e.g., $3times 10^6$, multi-arm spirals developed in an isolated disk can survive for more than 10 Gyrs. We confirmed that there is a self-regulating mechanism that maintains the amplitude of the spiral arms. Spiral arms increase Toomres $Q$ of the disk, and the heating rate correlates with the squared amplitude of the spirals. Since the amplitude itself is limited by the value of $Q$, this makes the dynamical heating less effective in the later phase of evolution. A simple analytical argument suggests that the heating is caused by gravitational scattering of stars by spiral arms, and that the self-regulating mechanism in pure-stellar disks can effectively maintain spiral arms on a cosmological timescale. In the case of a smaller number of particles, e.g., $3times 10^5$, spiral arms grow faster in the beginning of the simulation (while $Q$ is small) and they cause a rapid increase of $Q$. As a result, the spiral arms become faint in several Gyrs.
We investigate recent star formation in the extended ultraviolet (XUV) disks of five nearby galaxies (NGC 0628, NGC 2090, NGC 2841, NGC 3621, and NGC 5055) using a long wavelength baseline comprised of ultraviolet and mid-infrared imaging from the Galaxy Evolution Explorer and the Spitzer Infrared Array Camera. We identify 229 unresolved stellar complexes across targeted portions of their XUV disks and utilize spectral energy distribution fitting to measure their stellar ages and masses through comparison with Starburst99 population synthesis models of instantaneous burst populations. We find that the median age of outer disk associations in our sample is ~100 Myr with a large dispersion that spans the entire range of our models (1 Myr-1 Gyr). This relatively evolved state for most associations addresses the observed dearth of Halpha emission in some outer disks, as Halpha can only be observed in star forming regions younger than ~10 Myr. The large age dispersion is robust against variations in extinction (in the range E(B-V)=0-0.3 mag) and variations in the upper end of the stellar Initial Mass Function (IMF). In particular, we demonstrate that the age dispersion is insensitive to steepening of the IMF, up to extreme slopes.
99 - Ryan Miranda IAS 2018
Recent observations of protoplanetary disks, as well as simulations of planet-disk interaction, have suggested that a single planet may excite multiple spiral arms in the disk, in contrast to the previous expectations based on linear theory (predicting a one-armed density wave). We re-assess the origin of multiple arms in the framework of linear theory, by solving for the global two-dimensional response of a non-barotropic disk to an orbiting planet. We show that the formation of a secondary arm in the inner disk, at about half of the orbital radius of the planet, is a robust prediction of linear theory. This arm becomes stronger than the primary spiral at several tenths of the orbital radius of the planet. Several additional, weaker spiral arms may also form in the inner disk. On the contrary, a secondary spiral arm is unlikely to form in the outer disk. Our linear calculations, fully accounting for the global behavior of both the phases and amplitudes of perturbations, generally support the recently proposed WKB phase argument for the secondary arm origin (as caused by the intricacy of constructive interference of azimuthal harmonics of the perturbation at different radii). We provide analytical arguments showing that the process of a single spiral wake splitting up into multiple arms is a generic linear outcome of wave propagation in differentially rotating disks. It is not unique to planet-driven waves and occurs also in linear calculations of spiral wakes freely propagating with no external torques. These results are relevant for understanding formation of multiple rings and gaps in protoplanetary disks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا