Do you want to publish a course? Click here

Notes on the q-Analogues of the Natural Transforms and Some Further Applications

59   0   0.0 ( 0 )
 Added by Adem Kilicman
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

As an extension to the Laplace and Sumudu transforms the classical Natural transform was proposed to solve certain fluid flow problems. In this paper, we investigate q-analogues of the q-Natural transform of some special functions. We derive the q-analogues of the q-integral transform and further apply to some general special functions such as : the exponential functions, the q-trigonometric functions, the q-hyperbolic functions and the Heaviside Function. Some further results involving convolutions and differentiations are also obtained.



rate research

Read More

In this article we consider mathematical fundamentals of one method for proving inequalities by computer, based on the Remez algorithm. Using the well-known results of undecidability of the existence of zeros of real elementary functions, we demonstrate that the considered method generally in practice becomes one heuristic for the verification of inequalities. We give some improvements of the inequalities considered in the theorems for which the existing proofs have been based on the numerical verifications of Remez algorithm.
We prove an analogue of Chernoffs theorem for the Laplacian $ Delta_{mathbb{H}} $ on the Heisenberg group $ mathbb{H}^n.$ As an application, we prove Ingham type theorems for the group Fourier transform on $ mathbb{H}^n $ and also for the spectral projections associated to the sublaplacian.
An important class of fractional differential and integral operators is given by the theory of fractional calculus with respect to functions, sometimes called $Psi$-fractional calculus. The operational calculus approach has proved useful for understanding and extending this topic of study. Motivated by fractional differential equations, we present an operational calculus approach for Laplace transforms with respect to functions and their relationship with fractional operators with respect to functions. This approach makes the generalised Laplace transforms much easier to analyse and to apply in practice. We prove several important properties of these generalised Laplace transforms, including an inversion formula, and apply it to solve some fractional differential equations, using the operational calculus approach for efficient solving.
The area of fractional calculus (FC) has been fast developing and is presently being applied in all scientific fields. Therefore, it is of key relevance to assess the present state of development and to foresee, if possible, the future evolution, or, at least, the challenges identified in the scope of advanced research works. This paper gives a vision about the directions for further research as well as some open problems of FC. A number of topics in mathematics, numerical algorithms and physics are analyzed, giving a systematic perspective for future research.
170 - Victor J. W. Guo 2020
Let $E_n$ be the $n$-th Euler number and $(a)_n=a(a+1)cdots (a+n-1)$ the rising factorial. Let $p>3$ be a prime. In 2012, Sun proved the that $$ sum^{(p-1)/2}_{k=0}(-1)^k(4k+1)frac{(frac{1}{2})_k^3}{k!^3} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $$ which is a refinement of a famous supercongruence of Van Hamme. In 2016, Chen, Xie, and He established the following result: $$ sum_{k=0}^{p-1}(-1)^k (3k+1)frac{(frac{1}{2})_k^3}{k!^3} 2^{3k} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $$ which was originally conjectured by Sun. In this paper we give $q$-analogues of the above two supercongruences by employing the $q$-WZ method. As a conclusion, we provide a $q$-analogue of the following supercongruence of Sun: $$ sum_{k=0}^{(p-1)/2}frac{(frac{1}{2})_k^2}{k!^2} equiv (-1)^{(p-1)/2}+p^2 E_{p-3} pmod{p^3}. $$
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا