No Arabic abstract
Persistent evidence for a cosmic hemispherical asymmetry in the temperature field of cosmic microwave background (CMB) as observed by both WMAP as well as PLANCK increases the possibility of its cosmological origin. Presence of this signal may lead to different values for the standard model cosmological parameters in different directions, and that can have significant implications for other studies where they are used. We investigate the effect of this cosmic hemispherical asymmetry on cosmological parameters using non-isotropic Gaussian random simulations injected with both scale dependent and scale independent modulation strengths. Our analysis shows that $A_s$ and $n_s$ are the most susceptible parameters to acquire position dependence across the sky for the kind of isotropy breaking phenomena under study. As expected, we find maximum variation arises for the case of scale independent modulation of CMB anisotropies. We find that scale dependent modulation profile as seen in PLANCK data could lead to only $1.25sigma$ deviation in $A_s$ in comparison to its estimate from isotropic CMB sky.
In a galaxy redshift survey the objects to be targeted for spectra are selected from a photometrically observed sample. The observed magnitudes and colours of galaxies in this parent sample will be affected by their peculiar velocities, through relativistic Doppler and relativistic beaming effects. In this paper we compute the resulting expected changes in galaxy photometry. The magnitudes of the relativistic effects are a function of redshift, stellar mass, galaxy velocity and velocity direction. We focus on the CMASS sample from the Sloan Digital Sky Survey (SDSS), Baryon Oscillation Spectroscopic Survey (BOSS), which is selected on the basis of colour and magnitude. We find that 0.10% of the sample ($sim 585$ galaxies) has been scattered into the targeted region of colour-magnitude space by relativistic effects, and conversely 0.09% of the sample ($sim 532$ galaxies) has been scattered out. Observational consequences of these effects include an asymmetry in clustering statistics, which we explore in a companion paper. Here we compute a set of weights which can be used to remove the effect of modulations introduced into the density field inferred from a galaxy sample. We conclude by investigating the possible effects of these relativistic modulation on large scale clustering of the galaxy sample.
The great advances in the network of cosmological tests show that the relativistic Big Bang theory is a good description of our expanding universe. But the properties of nearby galaxies that can be observed in greatest detail suggest a still better theory would more rapidly gather matter into galaxies and groups of galaxies. This happens in theoretical ideas now under discussion.
Recently, the Planck satellite found a larger and most precise value of the matter energy density, that impacts on the present values of other cosmological parameters such as the Hubble constant, the present cluster abundances and the age of the Universe. The existing tension between Planck determination of these parameters in the frame of the base LambdaCDM model and their direct measurements generated lively discussions and several interpretations. In this paper we quantify this tension by exploring several extensions of the base LambdaCDM model that include the leptonic asymmetry. We set bounds on the radiation content of the Universe and neutrino properties by using the latest cosmological measurements, imposing also self-consistent BBN constraints on the primordial helium abundance. For all cosmological asymmetric models we find the preference of cosmological data for smaller values of active and sterile neutrino masses. This increases the tension between cosmological and short baseline neutrino oscillation data that favor a sterile neutrino with the mass of around 1 eV. For the case of degenerate massive neutrinos, we find that the discrepancies with direct determinations of the Hubble constant, the present cluster abundances and the age of the Universe are alleviated at ~ 1.3 sigma for all leptonic asymmetric models. We also find ~2 sigma statistical evidence of the preference of cosmological data for the normal neutrino hierarchy. This is more evident for the case of cosmological models involving leptonic asymmetry and three massive neutrino species. We conclude that the current cosmological data favor the leptonic asymmetric extension of the base LambdaCDM model and normal neutrino mass hierarchy over the models with additional sterile neutrino species and/or inverted neutrino mass hierarchy.
We explore the possibility that matter bulk flows could generate the required vorticity in the electron-proton-photon plasma to source cosmic magnetic fields through the Harrison mechanism. We analyze the coupled set of perturbed Maxwell and Boltzmann equations for a plasma in which the matter and radiation components exhibit relative bulk motions at the background level. We find that, to first order in cosmological perturbations, bulk flows with velocities compatible with current Planck limits ($beta<8.5times 10^{-4}$ at $95%$ CL) could generate magnetic fields with an amplitude $10^{-21}$ G on 10 kpc comoving scales at the time of completed galaxy formation which could be sufficient to seed a galactic dynamo mechanism.
We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESAs fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume LCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base LCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. (ABRIDGED)