Do you want to publish a course? Click here

Photometry of Very Bright Stars with Kepler and K2 Smear Data

85   0   0.0 ( 0 )
 Added by Benjamin Pope
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-precision time series photometry with the Kepler satellite has been crucial to our understanding both of exoplanets, and via asteroseismology, of stellar physics. After the failure of two reaction wheels, the Kepler satellite has been repurposed as Kepler-2 (K2), observing fields close to the ecliptic plane. As these fields contain many more bright stars than the original Kepler field, K2 provides an unprecedented opportunity to study nearby objects amenable to detailed follow-up with ground-based instruments. Due to bandwidth constraints, only a small fraction of pixels can be downloaded, with the result that most bright stars which saturate the detector are not observed. We show that engineering data acquired for photometric calibration, consisting of collateral `smear measurements, can be used to reconstruct light curves for bright targets not otherwise observable with Kepler/K2. Here we present some examples from Kepler Quarter 6 and K2 Campaign 3, including the delta Scuti variables HD 178875 and 70 Aqr, and the red giant HR 8500 displaying solar-like oscillations. We compare aperture and smear photometry where possible, and also study targets not previously observed. These encouraging results suggest this new method can be applied to most Kepler and K2 fields.



rate research

Read More

We present the first data release of the Kepler Smear Campaign, using collateral smear data obtained in the Kepler four-year mission to reconstruct light curves of 102 stars too bright to have been otherwise targeted. We describe the pipeline developed to extract and calibrate these light curves, and show that we attain photometric precision comparable to stars analyzed by the standard pipeline in the nominal Kepler mission. In this paper, aside from publishing the light curves of these stars, we focus on 66 red giants for which we detect solar-like oscillations, characterizing 33 of these in detail with spectroscopic chemical abundances and asteroseismic masses as benchmark stars. We also classify the whole sample, finding nearly all to be variable, with classical pulsations and binary effects. All source code, light curves, TRES spectra, and asteroseismic and stellar parameters are publicly available as a Kepler legacy sample.
116 - E. Plachy , L. Molnar , A. Bodi 2018
Thousands of RR Lyrae stars have been observed by the textit{Kepler} space telescope so far. We developed a photometric pipeline tailored to the light variations of these stars, called the Extended Aperture Photometry (EAP). We present the comparison of our photometric solutions for Campaigns 0 through 6 with the other pipelines available, e.g., SAP/PDCSAP, K2P2, EVEREST, and others. We focus on the problems caused by instrumental effects and the detectability of the low-amplitude additional modes.
The Kepler mission has provided a wealth of data, revealing new insights in time-domain astronomy. However, Keplers single band-pass has limited studies to a single wavelength. In this work we build a data-driven, pixel-level model for the Pixel Response Function (PRF) of Kepler targets, modeling the image data from the spacecraft. Our model is sufficiently flexible to capture known detector effects, such as non-linearity, intra-pixel sensitivity variations, and focus change. In theory, the shape of the Kepler PRF should also be weakly wavelength dependent, due to optical chromatic aberration and wavelength dependent detector response functions. We are able to identify these predicted shape changes to the PRF using the residuals between Kepler data and our model. In this work, we show that these PRF changes correspond to wavelength variability in Kepler targets using a small sample of eclipsing binaries. Using our model, we demonstrate that pixel-level light curves of eclipsing binaries show variable eclipse depths, ellipsoidal modulation and limb darkening. These changes at the pixel level are consistent with multi-wavelength photometry. Our work suggests each pixel in the Kepler data of a single target has a different effective wavelength, ranging from $approx$ 550-750 $nm$. In this proof of concept, we demonstrate our model, and discuss possible use cases for the wavelength dependent Pixel Response Function of Kepler. These use cases include characterizing variable systems, and vetting exoplanet discoveries at the pixel level. The chromatic PRF of Kepler is due to weak wavelength dependence in the optical systems and detector of the telescope, and similar chromatic PRFs are expected in other similar telescopes, notably the NASA TESS telescope.
118 - S. Aigrain 2017
We present ARC2 (Astrophysically Robust Correction 2), an open-source Python-based systematics-correction pipeline to correct for the Kepler prime mission long cadence light curves. The ARC2 pipeline identifies and corrects any isolated discontinuities in the light curves, then removes trends common to many light curves. These trends are modelled using the publicly available co-trending basis vectors, within an (approximate) Bayesian framework with `shrinkage priors to minimise the risk of over-fitting and the injection of any additional noise into the corrected light curves, while keeping any astrophysical signals intact. We show that the ARC2 pipelines performance matches that of the standard Kepler PDC-MAP data products using standard noise metrics, and demonstrate its ability to preserve astrophysical signals using injection tests with simulated stellar rotation and planetary transit signals. Although it is not identical, the ARC2 pipeline can thus be used as an open source alternative to PDC-MAP, whenever the ability to model the impact of the systematics removal process on other kinds of signal is important.
The textit{Kepler} space telescope observed thousands of RR Lyrae stars in the K2 mission. In this paper we present our photometric solutions using extended apertures in order to conserve the flux of the stars to the highest possible extent. With this method we are able to avoid most of the problems that RR Lyrae light curves produced by other pipelines suffer from. For post-processing we apply the K2SC pipeline to our light curves. We provide the EAP (Extended Aperture Photometry) of 432 RR Lyrae stars observed in campaigns 3, 4, 5, and 6. We also provide subclass classifications based on Fourier parameters. We investigated in particular the presence of the Blazhko effect in the stars, and found it to be 44.7% among the RRab stars, in agreement with results from independent samples. We found that the amplitude and phase modulation in the Blazhko stars may behave rather differently, at least over the length of a K2 Campaign. We also identified four anomalous Cepheid candidates in the sample one of which is potentially the first Blazhko-modulated member of its class.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا