Do you want to publish a course? Click here

Exploration and Exploitation of Victorian Science in Darwins Reading Notebooks

129   0   0.0 ( 0 )
 Added by Jaimie Murdock
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Search in an environment with an uncertain distribution of resources involves a trade-off between exploitation of past discoveries and further exploration. This extends to information foraging, where a knowledge-seeker shifts between reading in depth and studying new domains. To study this decision-making process, we examine the reading choices made by one of the most celebrated scientists of the modern era: Charles Darwin. From the full-text of books listed in his chronologically-organized reading journals, we generate topic models to quantify his local (text-to-text) and global (text-to-past) reading decisions using Kullback-Liebler Divergence, a cognitively-validated, information-theoretic measure of relative surprise. Rather than a pattern of surprise-minimization, corresponding to a pure exploitation strategy, Darwins behavior shifts from early exploitation to later exploration, seeking unusually high levels of cognitive surprise relative to previous eras. These shifts, detected by an unsupervised Bayesian model, correlate with major intellectual epochs of his career as identified both by qualitative scholarship and Darwins own self-commentary. Our methods allow us to compare his consumption of texts with their publication order. We find Darwins consumption more exploratory than the cultures production, suggesting that underneath gradual societal changes are the explorations of individual synthesis and discovery. Our quantitative methods advance the study of cognitive search through a framework for testing interactions between individual and collective behavior and between short- and long-term consumption choices. This novel application of topic modeling to characterize individual reading complements widespread studies of collective scientific behavior.



rate research

Read More

An online labor platform faces an online learning problem in matching workers with jobs and using the performance on these jobs to create better future matches. This learning problem is complicated by the rise of complex tasks on these platforms, such as web development and product design, that require a team of workers to complete. The success of a job is now a function of the skills and contributions of all workers involved, which may be unknown to both the platform and the client who posted the job. These team matchings result in a structured correlation between what is known about the individuals and this information can be utilized to create better future matches. We analyze two natural settings where the performance of a team is dictated by its strongest and its weakest member, respectively. We find that both problems pose an exploration-exploitation tradeoff between learning the performance of untested teams and repeating previously tested teams that resulted in a good performance. We establish fundamental regret bounds and design near-optimal algorithms that uncover several insights into these tradeoffs.
An agent learning through interactions should balance its action selection process between probing the environment to discover new rewards and using the information acquired in the past to adopt useful behaviour. This trade-off is usually obtained by perturbing either the agents actions (e.g., e-greedy or Gibbs sampling) or the agents parameters (e.g., NoisyNet), or by modifying the reward it receives (e.g., exploration bonus, intrinsic motivation, or hand-shaped rewards). Here, we adopt a disruptive but simple and generic perspective, where we explicitly disentangle exploration and exploitation. Different losses are optimized in parallel, one of them coming from the true objective (maximizing cumulative rewards from the environment) and others being related to exploration. Every loss is used in turn to learn a policy that generates transitions, all shared in a single replay buffer. Off-policy methods are then applied to these transitions to optimize each loss. We showcase our approach on a hard-exploration environment, show its sample-efficiency and robustness, and discuss further implications.
A sequence-to-sequence learning with neural networks has empirically proven to be an effective framework for Chinese Spelling Correction (CSC), which takes a sentence with some spelling errors as input and outputs the corrected one. However, CSC models may fail to correct spelling errors covered by the confusion sets, and also will encounter unseen ones. We propose a method, which continually identifies the weak spots of a model to generate more valuable training instances, and apply a task-specific pre-training strategy to enhance the model. The generated adversarial examples are gradually added to the training set. Experimental results show that such an adversarial training method combined with the pretraining strategy can improve both the generalization and robustness of multiple CSC models across three different datasets, achieving stateof-the-art performance for CSC task.
94 - Yao Yao , Li Xiao , Zhicheng An 2021
Model-based deep reinforcement learning has achieved success in various domains that require high sample efficiencies, such as Go and robotics. However, there are some remaining issues, such as planning efficient explorations to learn more accurate dynamic models, evaluating the uncertainty of the learned models, and more rational utilization of models. To mitigate these issues, we present MEEE, a model-ensemble method that consists of optimistic exploration and weighted exploitation. During exploration, unlike prior methods directly selecting the optimal action that maximizes the expected accumulative return, our agent first generates a set of action candidates and then seeks out the optimal action that takes both expected return and future observation novelty into account. During exploitation, different discounted weights are assigned to imagined transition tuples according to their model uncertainty respectively, which will prevent model predictive error propagation in agent training. Experiments on several challenging continuous control benchmark tasks demonstrated that our approach outperforms other model-free and model-based state-of-the-art methods, especially in sample complexity.
The goal of meta-reinforcement learning (meta-RL) is to build agents that can quickly learn new tasks by leveraging prior experience on related tasks. Learning a new task often requires both exploring to gather task-relevant information and exploiting this information to solve the task. In principle, optimal exploration and exploitation can be learned end-to-end by simply maximizing task performance. However, such meta-RL approaches struggle with local optima due to a chicken-and-egg problem: learning to explore requires good exploitation to gauge the explorations utility, but learning to exploit requires information gathered via exploration. Optimizing separate objectives for exploration and exploitation can avoid this problem, but prior meta-RL exploration objectives yield suboptimal policies that gather information irrelevant to the task. We alleviate both concerns by constructing an exploitation objective that automatically identifies task-relevant information and an exploration objective to recover only this information. This avoids local optima in end-to-end training, without sacrificing optimal exploration. Empirically, DREAM substantially outperforms existing approaches on complex meta-RL problems, such as sparse-reward 3D visual navigation. Videos of DREAM: https://ezliu.github.io/dream/

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا