No Arabic abstract
We present a new and up-to-date analysis of the solar low-degree $p$-mode parameter shifts from the Birmingham Solar-Oscillations Network (BiSON) over the past 22 years, up to the end of 2014. We aim to demonstrate that they are not dominated by changes in the asymmetry of the resonant peak profiles of the modes and that the previously published results on the solar-cycle variations of mode parameters are reliable. We compare the results obtained using a conventional maximum likelihood estimation algorithm and a new one based on the Markov Chain Monte Carlo (MCMC) technique, both taking into account mode asymmetry. We assess the reliability of the solar-cycle trends seen in the data by applying the same analysis to artificially generated spectra. We find that the two methods are in good agreement. Both methods accurately reproduce the input frequency shifts in the artificial data and underestimate the amplitude and width changes by a small amount, around 10 per cent. We confirm earlier findings that the frequency and line width are positively correlated, and the mode amplitude anticorrelated, with the level of solar activity, with the energy supplied to the modes remaining essentially unchanged. For the mode asymmetry the correlation with activity is marginal, but the MCMC algorithm gives more robust results than the MLE. The magnitude of the parameter shifts is consistent with earlier work. There is no evidence that the frequency changes we see arise from changes in the asymmetry, which would need to be much larger than those observed in order to give the observed frequency shift.
We present a nonlinear mean-field model of the solar interior dynamics and dynamo, which reproduces the observed cyclic variations of the global magnetic field of the Sun, as well as the differential rotation and meridional circulation. Using this model, we explain, for the first time, the extended 22-year pattern of the solar torsional oscillations, observed as propagation of zonal variations of the angular velocity from high latitudes to the equator during the time equal to the full dynamo cycle. In the literature, this effect is usually attributed to the so-called extended solar cycle. In agreement with the commonly accepted idea our model shows that the torsional oscillations can be driven by a combinations of magnetic field effects acting on turbulent angular momentum transport, and the large-scale Lorentz force. We find that the 22-year pattern of the torsional oscillations can result from a combined effect of an overlap of subsequent magnetic cycles and magnetic quenching of the convective heat transport. The latter effect results in cyclic variations of the meridional circulation in the sunspot formation zone, in agreement with helioseismology results. The variations of the meridional circulation together with other drivers of the torsional oscillations maintain their migration to the equator during the 22-year magnetic cycle, resulting in the observed extended pattern of the torsional oscillations.
Context. Large-scale equatorial Rossby modes have been observed on the Sun over the last two solar cycles. Aims. We investigate the impact of the time-varying zonal flows on the frequencies of Rossby modes. Methods. A first-order perturbation theory approach is used to obtain an expression for the expected shift in the mode frequencies due to perturbations in the internal rotation rate. Results. Using the time-varying rotation from helioseismic
Helioseismic data for solar cycles 23 and 24 have shown unequivocally that solar dynamics changes with solar activity. Changes in solar structure have been more difficult to detect. Basu & Mandel (2004) had claimed that the then available data revealed changes in the HeII ionization zone of the Sun. The amount of change, however, indicated the need for larger than expected changes in the magnetic fields. Now that helioseismic data spanning two solar cycles are available, we have redone the analysis using improved fitting techniques. We find that there is indeed a change in the region around the HeII ionization zone that is correlated with activity. Since the data sets now cover two solar cycles, the time variation is easily discernible.
The number of main-sequence stars for which we can observe solar-like oscillations is expected to increase considerably with the short-cadence high-precision photometric observations from the NASA Kepler satellite. Because of this increase in number of stars, automated tools are needed to analyse these data in a reasonable amount of time. In the framework of the asteroFLAG consortium, we present an automated pipeline which extracts frequencies and other parameters of solar-like oscillations in main-sequence and subgiant stars. The pipeline uses only the timeseries data as input and does not require any other input information. Tests on 353 artificial stars reveal that we can obtain accurate frequencies and oscillation parameters for about three quarters of the stars. We conclude that our methods are well suited for the analysis of main-sequence stars, which show mainly p-mode oscillations.
Using a nonlinear mean-field solar dynamo model, we study relationships between the amplitude of the `extended mode of migrating zonal flows (`torsional oscillations) and magnetic cycles, and investigate whether properties the torsional oscillations in subsurface layers and in the deep convection zone can provide information about the future solar cycles. We consider two types of dynamo models: models with regular variations of the alpha-effect, and models with stochastic fluctuations, simulating `long- and short-memory types of magnetic activity variations. It is found that torsional oscillation parameters, such the zonal acceleration, show a considerable correlation with the magnitude of the subsequent cycles with a time lag of 11-20 yr. The sign of the correlation and the time-lag parameters can depend on the depth and latitude of the torsional oscillations as well as on the properties of long-term (`centennial) variations of the dynamo cycles. The strongest correlations are found for the zonal acceleration at high latitudes at the base of the convection zone. The model results demonstrate that helioseismic observations of the torsional oscillations can be useful for advanced prediction of the solar cycles, one-two sunspot cycles ahead.