Do you want to publish a course? Click here

Semi-Calabi-Yau orbifolds and mirror pairs

88   0   0.0 ( 0 )
 Added by Elana Kalashnikov
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We generalize the cohomological mirror duality of Borcea and Voisin in any dimension and for any number of factors. Our proof applies to all examples which can be constructed through Berglund-H{u}bsch duality. Our method is a variant of the so-called Landau-Ginzburg/Calabi-Yau correspondence of Calabi-Yau orbifolds with an involution that does not preserve the volume form. We deduce a version of mirror duality for the fixed loci of the involution, which are beyond the Calabi-Yau category and feature hypersurfaces of general type.



rate research

Read More

We prove a version of the Sarkisov program for volume preserving birational maps of Mori fibred Calabi-Yau pairs valid in all dimensions. Our theorem generalises the theorem of Usnich and Blanc on factorisations of birational maps of the 2-dimensional torus that preserve the canonical volume form.
We exhibit examples of pairs $(X,D)$ where $X$ is a smooth projective variety and $D$ is an anticanonical reduced simple normal crossing divisor such that the deformations of $(X,D)$ are obstructed. These examples are constructed via toric geometry.
In this note we initiate a program to obtain global descriptions of Calabi-Yau moduli spaces, to calculate their Picard group, and to identify within that group the Hodge line bundle, and the closely-related Bagger-Witten line bundle. We do this here for several Calabi-Yaus obtained in [DW09] as crepant resolutions of the orbifold quotient of the product of three elliptic curves. In particular we verify in these cases a recent claim of [GHKSST16] by noting that a power of the Hodge line bundle is trivial -- even though in most of these cases the Picard group is infinite.
Borisov-Joyce constructed a real virtual cycle on compact moduli spaces of stable sheaves on Calabi-Yau 4-folds, using derived differential geometry. We construct an algebraic virtual cycle. A key step is a localisation of Edidin-Grahams square root Euler class for $SO(r,mathbb C)$ bundles to the zero locus of an isotropic section, or to the support of an isotropic cone. We prove a torus localisation formula, making the invariants computable and extending them to the noncompact case when the fixed locus is compact. We give a $K$-theoretic refinement by defining $K$-theoretic square root Euler classes and their localis
Motivated by S-duality modularity conjectures in string theory, we define new invariants counting a restricted class of 2-dimensional torsion sheaves, enumerating pairs $Zsubset H$ in a Calabi-Yau threefold X. Here H is a member of a sufficiently positive linear system and Z is a 1-dimensional subscheme of it. The associated sheaf is the ideal sheaf of $Zsubset H$, pushed forward to X and considered as a certain Joyce-Song pair in the derived category of X. We express these invariants in terms of the MNOP invariants of X.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا