Do you want to publish a course? Click here

The XMM deep survey in the CDF-S. IX. An X-ray outflow in a luminous obscured quasar at z~1.6

79   0   0.0 ( 0 )
 Added by Cristian Vignali
 Publication date 2015
  fields Physics
and research's language is English
 Authors C. Vignali




Ask ChatGPT about the research

In active galactic nuclei (AGN)-galaxy co-evolution models, AGN winds and outflows are often invoked to explain why super-massive black holes and galaxies stop growing efficiently at a certain phase of their lives. They are commonly referred to as the leading actors of feedback processes. Evidence of ultra-fast (v>0.05c) outflows in the innermost regions of AGN has been collected in the past decade by sensitive X-ray observations for sizable samples of AGN, mostly at low redshift. Here we present ultra-deep XMM-Newton and Chandra spectral data of an obscured (Nh~2x10^{23} cm^-2), intrinsically luminous (L2-10keV~4x10^{44} erg/s) quasar (named PID352) at z~1.6 (derived from the X-ray spectral analysis) in the Chandra Deep Field-South. The source is characterized by an iron emission and absorption line complex at observed energies of E~2-3 keV. While the emission line is interpreted as being due to neutral iron (consistent with the presence of cold absorption), the absorption feature is due to highly ionized iron transitions (FeXXV, FeXXVI) with an outflowing velocity of 0.14^{+0.02}_{-0.06}c, as derived from photoionization models. The mass outflow rate - ~2 Msun/yr - is similar to the source accretion rate, and the derived mechanical energy rate is ~9.5x10^{44} erg/s, corresponding to 9% of the source bolometric luminosity. PID352 represents one of the few cases where indications of X-ray outflowing gas have been observed at high redshift thus far. This wind is powerful enough to provide feedback on the host galaxy.



rate research

Read More

We aim to study the variability properties of bright hard X-ray selected Active Galactic Nuclei (AGN) with redshift between 0.3 and 1.6 detected in the Chandra Deep Field South (XMM-CDFS) by a long XMM observation. Taking advantage of the good count statistics in the XMM CDFS we search for flux and spectral variability using the hardness ratio techniques. We also investigated spectral variability of different spectral components. The spectra were merged in six epochs (defined as adjacent observations) and in high and low flux states to understand whether the flux transitions are accompanied by spectral changes. The flux variability is significant in all the sources investigated. The hardness ratios in general are not as variable as the fluxes. Only one source displays a variable HR, anti-correlated with the flux (source 337). The spectral analysis in the available epochs confirms the steeper when brighter trend consistent with Comptonisation models only in this source. Finding this trend in one out of seven unabsorbed sources is consistent, within the statistical limits, with the 15 % of unabsorbed AGN in previous deep surveys. No significant variability in the column densities, nor in the Compton reflection component, has been detected across the epochs considered. The high and low states display in general different normalisations but consistent spectral properties. X-ray flux fluctuations are ubiquitous in AGN. In general, the significant flux variations are not associated with a spectral variability: photon index and column densities are not significantly variable in nine out of the ten AGN over long timescales (from 3 to 6.5 years). The photon index variability is found only in one source (which is steeper when brighter) out of seven unabsorbed AGN. These results are consistent with previous deep samples.
220 - K. Iwasawa , R. Gilli , C. Vignali 2012
We present results on a search of heavily obscured active galaxies z>1.7 using the rest-frame 9-20 keV excess for X-ray sources detected in the deep XMM-CDFS survey. Out of 176 sources selected with the conservative detection criteria (>8 sigma) in the first source catalogue of Ranalli et al., 46 objects lie in the redshift range of interest with the median redshift z~2.5. Their typical rest-frame 10-20 keV luminosity is 1e+44 erg/s, as observed. Among optically faint objects that lack spectroscopic redshift, four were found to be strongly absorbed X-ray sources, and the enhanced Fe K emission or absorption features in their X-ray spectra were used to obtain X-ray spectroscopic redshifts. Using the X-ray colour-colour diagram based on the rest-frame 3-5 keV, 5-9 keV, and 9-20 keV bands, seven objects were selected for their 9-20 keV excess and were found to be strongly absorbed X-ray sources with column density of nH > 0.6e+24 cm-2, including two possible Compton thick sources. While they are emitting at quasar luminosity, ~3/4 of the sample objects are found to be absorbed by nH > 1e+22 cm-2. A comparison with local AGN at the matched luminosity suggests an increasing trend of the absorbed source fraction for high-luminosity AGN towards high redshifts.
We present results from the deep XMM-Newton observations of the two brightest X-ray sources in the Chandra Deep Field South (CDFS), PID 203 (z=0.544) and PID 319 (z=0.742). The long exposure of 2.5 Ms over a 10 year period (net 4 yr with a 6 yr gap) makes it possible to obtain high quality X-ray spectra of these two Type I AGN with X-ray luminosity of 10^44 erg/s, typical luminosity for low-redshift PG quasars, track their X-ray variability both in flux and spectral shape. Both sources showed X-ray flux variability of ~10-20 per cent in rms which is similar in the soft (0.5-2 keV) and hard (2-7 keV) bands. PID 203, which has evidence for optical extinction, shows modest amount of absorption (nH~1e21cm^-2) in the X-ray spectrum. Fe K emission is strongly detected in both objects with EW~0.2 keV. The lines in both objects are moderately broad and exhibit marginal evidence for variability in shape and flux, indicating that the bulk of the line emission come from their accretion disks rather than distant tori.
We present the X-ray properties of the Teacup AGN (SDSS J1430+1339), a $z=0.085$ type 2 quasar which is interacting dramatically with its host galaxy. Spectral modelling of the central quasar reveals a powerful, highly obscured AGN with a column density of $N_{rm H}=(4.2$-$6.5)times 10^{23}$ cm$^{-2}$ and an intrinsic luminosity of $L_{rm 2mbox{-}10,keV}=(0.8$-$1.4)times 10^{44}$ erg s$^{-1}$. The current high bolometric luminosity inferred ($L_{rm bol}approx 10^{45}$-$10^{46}$ erg s$^{-1}$) has ramifications for previous interpretations of the Teacup as a fading/dying quasar. High resolution Chandra imaging data reveal a $approx 10$ kpc loop of X-ray emission, co-spatial with the eastern bubble previously identified in luminous radio and ionised gas (e.g., [OIII] line) emission. The X-ray emission from this structure is in good agreement with a shocked thermal gas, with $T=(4$-$8)times 10^{6}$ K, and there is evidence for an additional hot component with $Tgtrsim 3times 10^{7}$ K. Although the Teacup is a radiatively dominated AGN, the estimated ratio between the bubble power and the X-ray luminosity is in remarkable agreement with observations of ellipticals, groups, and clusters of galaxies undergoing AGN feedback.
568 - G.A. Khorunzhev 2017
We present the results of optical spectroscopy for 19 quasar candidates at photometric redshifts $zphot gtrsim 3$, Nobs of which enter into the Khorunzhev et al.~(2016) catalog (K16). This is a catalog of quasar candidates and known type 1 quasars selected among the X-ray sources of the textit{3XMM-DR4}catalog of the XMM-Newton serendipitous survey. We have performed spectroscopy for a quasi-random sample of new candidates at the 1.6-m Azt telescope of the Sayan Solar Observatory and the 6-m BTA telescope of the Special Astrophysical Observatory. The spectra at Azt were taken with the new low- and medium-resolution ADAM spectrograph that was produced and installed on the telescope in 2015. Fourteen of the Nobs candidates actually have turned out to be quasars; 10 of them are at spectroscopic redshifts z > 3. The high purity of the sample of new candidates suggests that the purity of the entire K16 catalog of quasars is probably 70--80%. One of the most distant ($zspec=5.08$) optically bright ($i^primelesssim 21$) quasars ever detected in X-ray surveys has been discovered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا