Do you want to publish a course? Click here

The XMM deep survey in the CDF-S II. a 9-20 keV selection of heavily obscured active galaxies at z>1.7

221   0   0.0 ( 0 )
 Added by Kazushi Iwasawa
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results on a search of heavily obscured active galaxies z>1.7 using the rest-frame 9-20 keV excess for X-ray sources detected in the deep XMM-CDFS survey. Out of 176 sources selected with the conservative detection criteria (>8 sigma) in the first source catalogue of Ranalli et al., 46 objects lie in the redshift range of interest with the median redshift z~2.5. Their typical rest-frame 10-20 keV luminosity is 1e+44 erg/s, as observed. Among optically faint objects that lack spectroscopic redshift, four were found to be strongly absorbed X-ray sources, and the enhanced Fe K emission or absorption features in their X-ray spectra were used to obtain X-ray spectroscopic redshifts. Using the X-ray colour-colour diagram based on the rest-frame 3-5 keV, 5-9 keV, and 9-20 keV bands, seven objects were selected for their 9-20 keV excess and were found to be strongly absorbed X-ray sources with column density of nH > 0.6e+24 cm-2, including two possible Compton thick sources. While they are emitting at quasar luminosity, ~3/4 of the sample objects are found to be absorbed by nH > 1e+22 cm-2. A comparison with local AGN at the matched luminosity suggests an increasing trend of the absorbed source fraction for high-luminosity AGN towards high redshifts.



rate research

Read More

Accretion onto SMBH is believed to occur mostly in obscured AGN. Such objects are proving rather elusive in surveys of distant galaxies, including those at X-ray energies. Our main goal is to determine whether the revised IRAC criteria of Donley et al. (2012) (objects with an IR power-law spectral shape), are effective at selecting X-ray type-2 AGN. We present the results from the X-ray spectral analysis of 147 AGN selected by cross-correlating the highest spectral quality ultra-deep XMM-Newton and the Spitzer/IRAC catalogues in the CDF-S. Consequently it is biased towards sources with high S/N X-ray spectra. In order to measure the amount of intrinsic absorption in these sources, we adopt a simple X-ray spectral model that includes a power-law modified by intrinsic absorption and a possible soft X-ray component. We find 21/147 sources to be heavily absorbed but the uncertainties in their obscuring column densities do not allow us to confirm their Compton-Thick nature without resorting to additional criteria. Although IR power-law galaxies are less numerous in our sample than IR non-power-law galaxies (60 versus 87 respectively), we find that the fraction of absorbed (N_{H} > 10^{22} cm^{-2}) AGN is significantly higher (at about 3 sigma level) for IR-power-law sources ($sim$2/3) than for those sources that do not meet this IR selection criteria ($sim$1/2). This behaviour is particularly notable at low luminosities, but it appears to be present, although with a marginal significance, at all luminosities. We therefore conclude that the IR power-law method is efficient in finding X-ray-absorbed sources. We would then expect that the long-sought dominant population of absorbed AGN is abundant among IR power-law spectral shape sources not detected in X-rays.
78 - C. Vignali 2015
In active galactic nuclei (AGN)-galaxy co-evolution models, AGN winds and outflows are often invoked to explain why super-massive black holes and galaxies stop growing efficiently at a certain phase of their lives. They are commonly referred to as the leading actors of feedback processes. Evidence of ultra-fast (v>0.05c) outflows in the innermost regions of AGN has been collected in the past decade by sensitive X-ray observations for sizable samples of AGN, mostly at low redshift. Here we present ultra-deep XMM-Newton and Chandra spectral data of an obscured (Nh~2x10^{23} cm^-2), intrinsically luminous (L2-10keV~4x10^{44} erg/s) quasar (named PID352) at z~1.6 (derived from the X-ray spectral analysis) in the Chandra Deep Field-South. The source is characterized by an iron emission and absorption line complex at observed energies of E~2-3 keV. While the emission line is interpreted as being due to neutral iron (consistent with the presence of cold absorption), the absorption feature is due to highly ionized iron transitions (FeXXV, FeXXVI) with an outflowing velocity of 0.14^{+0.02}_{-0.06}c, as derived from photoionization models. The mass outflow rate - ~2 Msun/yr - is similar to the source accretion rate, and the derived mechanical energy rate is ~9.5x10^{44} erg/s, corresponding to 9% of the source bolometric luminosity. PID352 represents one of the few cases where indications of X-ray outflowing gas have been observed at high redshift thus far. This wind is powerful enough to provide feedback on the host galaxy.
We present the first results of the spectroscopy of distant, obscured AGN as obtained with the ultra-deep (~3.3 Ms) XMM-Newton survey in the Chandra Deep Field South (CDFS). One of the primary goals of the project is to characterize the X-ray spectral properties of obscured and heavily obscured Compton-thick AGN over the range of redhifts and luminosities that are relevant in terms of their contribution to the X-ray background. The ultra-deep exposure, coupled with the XMM detectors spectral throughput, allowed us to accumulate good quality X-ray spectra for a large number of X-ray sources and, in particular, for heavily obscured AGN at cosmological redshifts. Specifically we present the X-ray spectral properties of two high-redshift - z= 1.53 and z=3.70 - sources. The XMM spectra of both are very hard, with a strong iron Kalpha line at a rest-frame energy of 6.4 keV. A reflection-dominated continuum provides the best description of the X-ray spectrum of the z=1.53 source, while the intrinsic continuum of the z=3.70 AGN is obscured by a large column N_H ~ 10^24 cm-2 of cold gas. Compton-thick absorption, or close to it, is unambiguously detected in both sources. Interestingly, these sources would not be selected as candidate Compton thick AGN by some multiwavelength selection criteria based on the mid-infrared to optical and X-ray to optical flux ratios.
118 - B. Luo , W.N. Brandt , Y.Q. Xue 2011
(abridged) We identify a numerically significant population of heavily obscured AGNs at z~0.5-1 in the Chandra Deep Field-South (CDF-S) and Extended Chandra Deep Field-South by selecting 242 X-ray undetected objects with infrared-based star formation rates (SFRs) substantially higher (a factor of 3.2 or more) than their SFRs determined from the UV after correcting for dust extinction. An X-ray stacking analysis of 23 candidates in the central CDF-S region using the 4 Ms Chandra data reveals a hard X-ray signal with an effective power-law photon index of Gamma=0.6_{-0.4}^{+0.3}, indicating a significant contribution from obscured AGNs. Based on Monte Carlo simulations, we conclude that 74+-25% of the selected galaxies host obscured AGNs, within which ~95% are heavily obscured and ~80% are Compton-thick (CT; NH>1.5x10^{24} cm^{-2}). The heavily obscured objects in our sample are of moderate intrinsic X-ray luminosity [ ~ (0.9-4)x10^{42} erg/s in the 2-10 keV band]. The space density of the CT AGNs is (1.6+-0.5)x10^{-4} Mpc^{-3}. The z~0.5-1 CT objects studied here are expected to contribute ~1% of the total XRB flux in the 10-30 keV band, and they account for ~5-15% of the emission in this energy band expected from all CT AGNs according to population-synthesis models. In the 6--8 keV band, the stacked signal of the 23 heavily obscured candidates accounts for <5% of the unresolved XRB flux, while the unresolved ~25% of the XRB in this band can probably be explained by a stacking analysis of the X-ray undetected optical galaxies in the CDF-S (a 2.5 sigma stacked signal). We discuss prospects to identify such heavily obscured objects using future hard X-ray observatories.
We study the properties of a sample of 211 heavily-obscured Active Galactic Nucleus (AGN) candidates in the Extended Chandra Deep Field-South selecting objects with f_24/f_R>1000 and R-K>4.5. Of these, 18 were detected in X-rays and found to be obscured AGN with neutral hydrogen column densities of ~10^23 cm^-2. In the X-ray undetected sample, the following evidence suggests a large fraction of heavily-obscured (Compton Thick) AGN: (i) The stacked X-ray signal of the sample is strong, with an observed ratio of soft to hard X-ray counts consistent with a population of ~90% heavily obscured AGN combined with 10% star-forming galaxies. (ii) The X-ray to mid-IR ratios for these sources are significantly larger than that of star-forming galaxies and ~2 orders of magnitude smaller than for the general AGN population, suggesting column densities of N_H>5x10^24 cm^-2. (iii) The Spitzer near- and mid-IR colors of these sources are consistent with those of the X-ray-detected sample if the effects of dust self-absorption are considered. Spectral fitting to the rest-frame UV/optical light (dominated by the host galaxy) returns stellar masses of ~10^11 M_sun and <E(B-V)> =0.5, and reveals evidence for a significant young stellar population, indicating that these sources are experiencing considerable star-formation. This sample of heavily-obscured AGN candidates implies a space density at z~2 of ~10^-5 Mpc^-3, finding a strong evolution in the number of L_X>10^44 erg/s sources from z=1.5 to 2.5, possibly consistent with a short-lived heavily-obscured phase before an unobscured quasar is visible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا