Do you want to publish a course? Click here

New expansion rate measurements of the Crab Nebula in radio and optical

59   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new radio measurements of the expansion rate of the Crab nebulas synchrotron nebula over a ~30-yr period. We find a convergence date for the radio synchrotron nebula of CE 1255 +- 27. We also re-evaluated the expansion rate of the optical line emitting filaments, and we show that the traditional estimates of their convergence dates are slightly biased. Using an un-biased Bayesian analysis, we find a convergence date for the filaments of CE 1091 +- 34 (~40 yr earlier than previous estimates). Our results show that both the synchrotron nebula and the optical line-emitting filaments have been accelerated since the explosion in CE 1054, but that the synchrotron nebula has been relatively strongly accelerated, while the optical filaments have been only slightly accelerated. The finding that the synchrotron emission expands more rapidly than the filaments supports the picture that the latter are the result of the Rayleigh-Taylor instability at the interface between the pulsar-wind nebula and the surrounding freely-expanding supernova ejecta, and rules out models where the pulsar wind bubble is interacting directly with the pre-supernova wind of the Crabs progenitor.

rate research

Read More

We observed the Crab pulsar in October 2008 at the Copernico Telescope in Asiago - Cima Ekar with the optical photon counter Aqueye (the Asiago Quantum Eye) which has the best temporal resolution and accuracy ever achieved in the optical domain (hundreds of picoseconds). Our goal was to perform a detailed analysis of the optical period and phase drift of the main peak of the Crab pulsar and compare it with the Jodrell Bank ephemerides. We determined the position of the main peak using the steepest zero of the cross-correlation function between the pulsar signal and an accurate optical template. The pulsar rotational period and period derivative have been measured with great accuracy using observations covering only a 2 day time interval. The error on the period is 1.7 ps, limited only by the statistical uncertainty. Both the rotational frequency and its first derivative are in agreement with those from the Jodrell Bank radio ephemerides archive. We also found evidence of the optical peak leading the radio one by ~230 microseconds. The distribution of phase-residuals of the whole dataset is slightly wider than that of a synthetic signal generated as a sequence of pulses distributed in time with the probability proportional to the pulse shape, such as the average count rate and background level are those of the Crab pulsar observed with Aqueye. The counting statistics and quality of the data allowed us to determine the pulsar period and period derivative with great accuracy in 2 days only. The time of arrival of the optical peak of the Crab pulsar leads the radio one in agreement with what recently reported in the literature. The distribution of the phase residuals can be approximated with a Gaussian and is consistent with being completely caused by photon noise (for the best data sets).
100 - N. Bucciantini 2017
In this paper we present, for the first time, simulated maps of the circularly polarized synchrotron emission from the Crab nebula, using multidimensional state of the art models for the magnetic field geometry. Synchrotron emission is the signature of non-thermal emitting particles, typical of many high-energy astrophysical sources, both Galactic and extra-galactic ones. Its spectral and polarization properties allow us to infer key informations on the particles distribution function and magnetic field geometry. In recent years our understanding of pulsar wind nebulae has improved substantially thanks to a combination of observations and numerical models. A robust detection or non-detection of circular polarization will enable us to discriminate between an electron-proton plasma and a pair plasma, clarifying once for all the origin of the radio emitting particles, setting strong constraints on the pair production in pulsar magnetosphere, and the role of turbulence in the nebula. Previous attempts at measuring the circular polarization have only provided upper limits, but the lack of accurate estimates, based on reliable models, makes their interpretation ambiguous. We show here that those results are above the expected values, and that current polarimetric tecniques are not robust enough for conclusive result, suggesting that improvements in construction and calibration of next generation radio facilities are necessary to achieve the desired sensitivity.
259 - A. A. Abdo , B. T. Allen , T. Aune 2011
The Crab Nebula was detected with the Milagro experiment at a statistical significance of 17 standard deviations over the lifetime of the experiment. The experiment was sensitive to approximately 100 GeV - 100 TeV gamma ray air showers by observing the particle footprint reaching the ground. The fraction of detectors recording signals from photons at the ground is a suitable proxy for the energy of the primary particle and has been used to measure the photon energy spectrum of the Crab Nebula between ~1 and ~100 TeV. The TeV emission is believed to be caused by inverse-Compton up-scattering scattering of ambient photons by an energetic electron population. The location of a TeV steepening or cutoff in the energy spectrum reveals important details about the underlying electron population. We describe the experiment and the technique for distinguishing gamma-ray events from the much more-abundant hadronic events. We describe the calculation of the significance of the excess from the Crab and how the energy spectrum is fit. The fit is consistent with values measured by IACTs between 1 and 20 TeV. Fixing the spectral index to values that have been measured below 1 TeV by IACT experiments (2.4 to 2.6), the fit to the Milagro data suggests that Crab exhibits a spectral steepening or cutoff between about 20 to 40 TeV.
We present a hyperspectral cube of the Crab Nebula obtained with the imaging Fourier transform spectrometer SITELLE on the Canada-France-Hawaii telescope. We describe our techniques used to deconvolve the 310 000 individual spectra (R = 9 600) containing Halpha, [NII]6548,6583, and [SII]6716,6731 emission lines and create a detailed three-dimensional reconstruction of the supernova remnant assuming uniform global expansion. We find that the general boundaries of the 3D volume occupied by the Crab are not strictly ellipsoidal as commonly assumed, and instead appear to follow a heart-shaped distribution that is symmetrical about the plane of the pulsar wind torus. Conspicuous restrictions in the bulk distribution of gas consistent with constrained expansion coincide with positions of the dark bays and east-west band of He-rich filaments, which may be associated with interaction with a pre-existing circumstellar disk. The distribution of filaments follows an intricate honeycomb-like arrangement with straight and rounded boundaries at large and small scales that are anti-correlated with distance from the center of expansion. The distribution is not unlike the large-scale rings observed in supernova remnants 3C 58 and Cassiopeia A, where it has been attributed to turbulent mixing processes that encouraged outwardly expanding plumes of radioactive 56Ni-rich ejecta. These characteristics reflect critical details of the original supernova of 1054 CE and its progenitor star, and may favour a low-energy explosion of an iron-core progenitor. We demonstrate that our main findings are robust despite regions of non-homologous expansion driven by acceleration of material by the pulsar wind nebula.
We present broadband (3 -- 78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power-law in this energy band, spatially resolved spectroscopy of the nebula finds a break at $sim$9 keV in the spectral photon index of the torus structure with a steepening characterized by $DeltaGammasim0.25$. We also confirm a previously reported steepening in the pulsed spectrum, and quantify it with a broken power-law with break energy at $sim$12 keV and $DeltaGammasim0.27$. We present spectral maps of the inner 100as of the remnant and measure the size of the nebula as a function of energy in seven bands. These results find that the rate of shrinkage with energy of the torus size can be fitted by a power-law with an index of $gamma = 0.094pm 0.018$, consistent with the predictions of Kennel and Coroniti (1984). The change in size is more rapid in the NW direction, coinciding with the counter-jet where we find the index to be a factor of two larger. NuSTAR observed the Crab during the latter part of a $gamma$-ray flare, but found no increase in flux in the 3 - 78 keV energy band.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا