Do you want to publish a course? Click here

Rhapsody-G simulations I: the cool cores, hot gas and stellar content of massive galaxy clusters

90   0   0.0 ( 0 )
 Added by Oliver Hahn
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the Rhapsody-G suite of cosmological hydrodynamic AMR zoom simulations of ten massive galaxy clusters at the $M_{rm vir}sim10^{15},{rm M}_odot$ scale. These simulations include cooling and sub-resolution models for star formation and stellar and supermassive black hole feedback. The sample is selected to capture the whole gamut of assembly histories that produce clusters of similar final mass. We present an overview of the successes and shortcomings of such simulations in reproducing both the stellar properties of galaxies as well as properties of the hot plasma in clusters. In our simulations, a long-lived cool-core/non-cool core dichotomy arises naturally, and the emergence of non-cool cores is related to low angular momentum major mergers. Nevertheless, the cool-core clusters exhibit a low central entropy compared to observations, which cannot be alleviated by thermal AGN feedback. For cluster scaling relations we find that the simulations match well the $M_{500}-Y_{500}$ scaling of Planck SZ clusters but deviate somewhat from the observed X-ray luminosity and temperature scaling relations in the sense of being slightly too bright and too cool at fixed mass, respectively. Stars are produced at an efficiency consistent with abundance matching constraints and central galaxies have star formation rates consistent with recent observations. While our simulations thus match various key properties remarkably well, we conclude that the shortcomings strongly suggest an important role for non-thermal processes (through feedback or otherwise) or thermal conduction in shaping the intra-cluster medium.



rate research

Read More

We present a systematic study of gas density perturbations in cool cores of high-mass galaxy clusters. We select 12 relaxed clusters from the Cluster Lensing And Supernova survey with Hubble (CLASH) sample and analyze their cool core features observed with the Chandra X-ray Observatory. We focus on the X-ray residual image characteristics after subtracting their global profile of the X-ray surface brightness distribution. We find that all the galaxy clusters in our sample have, at least, both one positive and one negative excess regions in the X-ray residual image, indicating the presence of gas density perturbations. We identify and characterize the locally perturbed regions using our detection algorithm, and extract X-ray spectra of the intracluster medium (ICM). The ICM temperature in the positive excess region is lower than that in the negative excess region, whereas the ICM in both regions is in pressure equilibrium in a systematic manner. These results indicate that gas sloshing in cool cores takes place in more than 80% of relaxed clusters (95% CL). We confirm this physical picture by analyzing synthetic X-ray observations of a cool-core cluster from a hydrodynamic simulation, finding that our detection algorithm can accurately extract both the positive and negative excess regions and can reproduce the temperature difference between them. Our findings support the picture that the gas density perturbations are induced by gas sloshing, and a large fraction of cool-core clusters have undergone gas sloshing, indicating that gas sloshing may be capable of suppressing runaway cooling of the ICM.
We analyse the stellar and hot gas content of 18 nearby, low-mass galaxy clusters, detected in redshift space and selected to have a dynamical mass 3E14<M/Msun<6E14, as measured from the 2dF Galaxy Redshift Survey. We combine X-ray measurements from both Chandra and XMM with ground-based near-infrared observations from CTIO, AAT and CFHT to compare the mass in hot gas and stars to the dynamical mass and state of the clusters. Only 13 of the clusters are detected in X-ray emission, and for these systems we find that a range of 7-20 per cent of their baryonic mass, and <3 per cent of their dynamical mass, is detected in starlight, similar to what is observed in more massive clusters. In contrast, the five undetected clusters are underluminous in X-ray emission, by up to a factor 10, given their stellar mass. Although the velocity distribution of cluster members in these systems is indistinguishable from a Gaussian, all show subtle signs of being unrelaxed: either they lack a central, dominant galaxy, or the bright galaxy distribution is less concentrated and/or more elongated than the rest of the sample. Thus we conclude that low-mass clusters and groups selected from the velocity distribution of their galaxies exhibit a dichotomy in their hot gas properties. Either they are detected in X-ray, in which case they generally lie on the usual scaling relations, or they are completely undetected in X-ray emission. The non-detections may be partly related to the apparently young dynamical state of the clusters, but it remains a distinct possibility that some of these systems are exceptionally devoid of hot emitting gas as the result of its expulsion or rarefaction.
We aim to determine the intrinsic variety, at a given mass, of the properties of the intracluster medium in clusters of galaxies. This requires a cluster sample selected independently of the intracluster medium content for which reliable masses and subsequent X-ray data can be obtained. We present one such sample, consisting of 34 galaxy clusters selected independently of their X-ray properties in the nearby ($0.050<z<0.135$) Universe and mostly with $14<log M_{500}/M_odot lesssim 14.5$, where masses are dynamically estimated. We collected the available X-ray observations from the archives and then observed the remaining clusters with the low-background Swift X-ray telescope, which is extremely useful for sampling a cluster population expected to have low surface brightness. We found that clusters display a large range (up to a factor 50) in X-ray luminosities within $r_{500}$ at a given mass, whether or not the central emission ($r<0.15 r_{500}$) is excised, unveiling a wider cluster population than seen in Sunayev-Zeldovich surveys or inferred from the population seen in X-ray surveys. The measured dispersion is $0.5$ dex in $L_X$ at a given mass.
We investigate the properties of the hot gas in four fossil galaxy systems detected at high significance in the Planck Sunyaev-Zeldovich (SZ) survey. XMM-Newton observations reveal overall temperatures of kT ~ 5-6 keV and yield hydrostatic masses M500,HE > 3.5 x 10e14 Msun, confirming their nature as bona fide massive clusters. We measure the thermodynamic properties of the hot gas in X-rays (out to beyond R500 in three cases) and derive their individual pressure profiles out to R ~ 2.5 R500 with the SZ data. We combine the X-ray and SZ data to measure hydrostatic mass profiles and to examine the hot gas content and its radial distribution. The average Navarro-Frenk-White (NFW) concentration parameter, c500 = 3.2 +/- 0.4, is the same as that of relaxed `normal clusters. The gas mass fraction profiles exhibit striking variation in the inner regions, but converge to approximately the cosmic baryon fraction (corrected for depletion) at R500. Beyond R500 the gas mass fraction profiles again diverge, which we interpret as being due to a difference in gas clumping and/or a breakdown of hydrostatic equilibrium in the external regions. Overall our observations point to considerable radial variation in the hot gas content and in the gas clumping and/or hydrostatic equilibrium properties in these fossil clusters, at odds with the interpretation of their being old, evolved and undisturbed. At least some fossil objects appear to be dynamically young.
X-ray observations of many clusters of galaxies reveal the presence of edges in surface brightness and temperature, known as cold fronts. In relaxed clusters with cool cores, these edges have been interpreted as evidence for the sloshing of the core gas in the clusters gravitational potential. The smoothness of these edges has been interpreted as evidence for the stabilizing effect of magnetic fields draped around the front surfaces. To check this hypothesis, we perform high-resolution magnetohydrodynamics simulations of magnetized gas sloshing in galaxy clusters initiated by encounters with subclusters. We go beyond previous works on the simulation of cold fronts in a magnetized intracluster medium by simulating their formation in realistic, idealized mergers with high resolution ({Delta}x ~ 2 kpc). Our simulations sample a parameter space of plausible initial magnetic field strengths and field configurations. In the simulations, we observe strong velocity shears associated with the cold fronts amplifying the magnetic field along the cold front surfaces, increasing the magnetic field strength in these layers by up to an order of magnitude, and boosting the magnetic pressure up to near-equipartition with thermal pressure in some cases. In these layers, the magnetic field becomes strong enough to stabilize the cold fronts against Kelvin-Helmholtz instabilities, resulting in sharp, smooth fronts as those seen in observations of real clusters. These magnetic fields also result in strong suppression of mixing of high and low-entropy gas in the cluster, seen in our simulations of mergers in the absence of a magnetic field. As a result, the heating of the core due to sloshing is very modest and is unable to stave off a cooling catastrophe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا