Do you want to publish a course? Click here

Multiverse as an ensemble of stable and unstable Universes

200   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English
 Authors K. Urbanowski




Ask ChatGPT about the research

Calculations performed within the Standard Model suggest that the electroweak vacuum is unstable if the mass of the Higgs particle is around 125 --- 126 GeV. Recent LHC results concerning the mass of the Higgs boson indicate that its mass is around 125.7 GeV. So it is possible that the vacuum in our Universe may be unstable. This means that it is reasonable to analyze properties of Universes with unstable vacua. We analyze properties of an ensemble of Universes with unstable vacua considered as an ensemble of unstable systems from the point of view of the quantum theory of unstable states and we try to explain why the universes with the unstable vacuum needs not decay.



rate research

Read More

The observability of the multiverse is at the very root of its physical significance as a scientific proposal. In this conference we present, within the third quantization formalism, an interacting scheme between the wave functions of different universes and analyze the effects of some particular values of the coupling function. One of the main consequences of the interaction between universes can be the appearance of a pre-inflationary stage in the evolution of the universes that might leave observable consequences in the properties of the CMB.
We construct a black hole whose interior is the false vacuum and whose exterior is the true vacuum of a classical field theory. From the outside the metric is the usual Schwarzschild one, but from the inside the space is de Sitter with a cosmological constant determined by the energy of the false vacuum. The parameters of the field potential may allow for the false vacuum to exist for more than the present age of the universe. A potentially relevant effective field theory within the context of QCD results in a Schwarzschild radius of about 200 km.
144 - E.I. Guendelman 2010
Evidence to the case that classical gravitation provides the clue to make sense out of quantum gravity is presented. The key observation is the existence in classical gravitation of child universe solutions or almost solutions, almost because of some singularity problems. The difficulties of these child universe solutions due to their generic singularity problems will be very likely be cured by quantum effects, just like for example almost instanton solutions are made relevant in gauge theories with breaking of conformal invariance. Some well motivated modifcations of General Relativity where these singularity problems are absent even at the classical level are discussed. High energy density excitations, responsible for UV divergences in quantum field theories, including quantum gravity, are likely to be the source of child universes which carry them out of the original space time. This decoupling could prevent these high UV excitations from having any influence on physical amplitudes. Child universe production could therefore be responsible for UV regularization in quantum field theories which take into account semiclassically gravitational effects. Child universe production in the last stages of black hole evaporation, the prediction of absence of tranplanckian primordial perturbations, connection to the minimum length hypothesis and in particular the connection to the maximal curvature hypothesis are discussed. Some discussion of superexcited states in the case these states are Kaluza Klein excitations is carried out. Finally, the posibility of obtaining string like effects from the wormholes associated with the child universes is discussed.
This is the first of a series of papers in which we use analyticity properties of quantum fields propagating on a spacetime to uncover a new multiverse geometry when the classical geometry has horizons and/or singularities. The nature and origin of the multiverse idea presented in this paper, that is shared by the fields in the standard model coupled to gravity, is different from other notions of a multiverse. Via analyticity we are able to establish definite relations among the universes. In this paper we illustrate these properties for the extended Rindler space, while black hole spacetime and the cosmological geometry of mini-superspace (see Appendix B) will appear in later papers. In classical general relativity, extended Rindler space is equivalent to flat Minkowski space; it consists of the union of the four wedges in (u,v) light-cone coordinates as in Fig.(1). In quantum mechanics, the wavefunction is an analytic function of (u,v) that is sensitive to branch points at the horizons u=0 or v=0, with branch cuts attached to them. The wavefunction is uniquely defined by analyticity on an infinite number of sheets in the cut analytic (u,v) spacetime. This structure is naturally interpreted as an infinite stack of identical Minkowski geometries, or universes, connected to each other by analyticity across branch cuts, such that each sheet represents a different Minkowski universe when (u,v) are analytically continued to the real axis on any sheet. We show in this paper that, in the absence of interactions, information doesnt flow from one Rindler sheet to another. By contrast, for an eternal black hole spacetime, which may be viewed as a modification of Rindler that includes gravitational interactions, analyticity shows how information is lost due to a flow to other universes, enabled by an additional branch point and cut due to the black hole singularity.
In this paper we construct a precise mathematical model of the Multiverse, consisted of the universes, that are connected with each other by dynamical wormholes. We consider spherically symmetric free of matter wormholes. At the same time separate universes in this model are not necessary spherically symmetric and can significantly differ from one another. We also analyze a possibility of the information exchange between different universes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا