Do you want to publish a course? Click here

Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn$_{3}X$ ($X$ = Rh, Ir, or Pt)

108   0   0.0 ( 0 )
 Added by Guang-Yu Guo
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magneto-optical Kerr effect, normally found in magnetic materials with nonzero magnetization such as ferromagnets and ferrimagnets, has been known for more than a century. Here, using first-principles density functional theory, we demonstrate large magneto-optical Kerr effect in high temperature noncollinear antiferromagnets Mn$_{3}X$ ($X$ = Rh, Ir, or Pt), in contrast to usual wisdom. The calculated Kerr rotation angles are large, being comparable to that of transition metal magnets such as bcc Fe. The large Kerr rotation angles and ellipticities are found to originate from the lifting of the band double-degeneracy due to the absence of spatial symmetry in the Mn$_{3}X$ noncollinear antiferromagnets which together with the time-reversal symmetry would preserve the Kramers theorem. Our results indicate that Mn$_{3}X$ would provide a rare material platform for exploration of subtle magneto-optical phenomena in noncollinear magnetic materials without net magnetization.



rate research

Read More

Noncollinear antiferromagnets (AFMs) have recently attracted a lot of attention owing to the potential emergence of exotic spin orders on geometrically frustrated lattices, which can be characterized by corresponding spin chiralities. By performing first-principles density functional calculations together with group-theory analysis and tight-binding modelling, here we systematically study the spin-order dependent anomalous Hall effect (AHE) and magneto-optical effect (MOE) in representative noncollinear AFMs Mn$_{3}X$N ($X$ = Ga, Zn, Ag, and Ni). The symmetry-related tensor shape of the intrinsic anomalous Hall conductivity (IAHC) for different spin orders is determined by analyzing the relevant magnetic point groups. We show that while only the ${xy}$ component of the IAHC tensor is nonzero for right-handed spin chirality, all other elements, $sigma_{xy}$, $sigma_{yz}$, and $sigma_{zx}$, are nonvanishing for a state with left-handed spin chirality owing to lowering of the symmetry. Our tight-binding arguments reveal that the magnitude of IAHC relies on the details of the band structure and that $sigma_{xy}$ is periodically modulated as the spin rotates in-plane. The IAHC obtained from first principles is found to be rather large, e.g., it amounts to 359 S/cm in Mn$_{3}$AgN. By extending our analysis to finite frequencies, we calculate the optical isotropy [$sigma_{xx}(omega)approxsigma_{yy}(omega)approxsigma_{zz}(omega)$] and the magneto-optical anisotropy [$sigma_{xy}(omega) eqsigma_{yz}(omega) eqsigma_{zx}(omega)$] of Mn$_{3}X$N. We argue that the spin-order dependent AHE and MOE are indispensable in detecting complex spin structures in noncollinear AFMs.
Magneto-optical spectroscopy based on the transverse magneto-optical Kerr effect (TMOKE) is a sensitive method for investigation of magnetically-ordered media. However, in magnetic materials the optical transitions are usually characterized by spectrally broad resonances with widths considerably exceeding the Zeeman splitting in the magnetic field. Here we investigate experimentally and theoretically the TMOKE in the vicinity of relatively narrow optical resonances provided by confined quantum systems. For experimental demonstration we use the exciton resonance in a (Cd,Mn)Te diluted magnetic semiconductor quantum well, where the strong exchange interaction with magnetic ions enables the giant Zeeman splitting of exciton spin states $Delta$ in magnetic fields of a few Tesla. In the weak coupling regime, when the splitting $Delta$ is smaller than the spectral broadening of the optical transitions $Gamma$, the TMOKE magnitude grows linearly with the increase of the Zeeman splitting and its spectrum has an S-shape, which remains virtually unchanged in this range. In the strong coupling regime ($Delta>Gamma$) the TMOKE magnitude saturates, while its spectrum is strongly modified resulting in the appearance of two separate peaks. The TMOKE is sensitive not only to the sample surface but can be used to probe the confined electronic states in depth if the upper layer is sufficiently transparent. Our results demonstrate that TMOKE of spectrally narrow resonances serves as a versatile tool for probing the charge and spin structure of electronic states in various confined quantum systems and can be used for spin tomography in combination with the conventional polar Kerr effect.
294 - C. Sun , J. Kono , Y. Cho 2009
We have performed a systematic magneto-optical Kerr spectroscopy study of GaMnAs with varying Mn densities as a function of temperature, magnetic field, and photon energy. Unlike previous studies, the magnetization easy axis was perpendicular to the sample surface, allowing us to take remanent polar Kerr spectra in the absence of an external magnetic field. The remanent Kerr angle strongly depended on the photon energy, exhibiting a large positive peak at $sim1.7$ eV. This peak increased in intensity and blue-shifted with Mn doping and further blue-shifted with annealing. Using a 30-band ${bf kcdot p}$ model with antiferromagnetic $s,p$-$d$ exchange interaction, we calculated the dielectric tensor of GaMnAs in the interband transition region, assuming that our samples are in the metallic regime and the impurity band has merged with the valence band. We successfully reproduced the observed spectra without emph{ad hoc} introduction of the optical transitions originated from impurity states in the band gap. These results lead us to conclude that above-bandgap magneto-optical Kerr rotation in ferromagnetic GaMnAs is predominantly determined by interband transitions between the conduction and valence bands.
When a polarized light beam is incident upon the surface of a magnetic material, the reflected light undergoes a polarization rotation. This magneto-optical Kerr effect (MOKE) has been intensively studied in a variety of ferro- and ferrimagnetic materials because it provides a powerful probe for electronic and magnetic properties as well as for various applications including magneto-optical recording. Recently, there has been a surge of interest in antiferromagnets (AFMs) as prospective spintronic materials for high-density and ultrafast memory devices, owing to their vanishingly small stray field and orders of magnitude faster spin dynamics compared to their ferromagnetic counterparts. In fact, the MOKE has proven useful for the study and application of the antiferromagnetic (AF) state. Although limited to insulators, certain types of AFMs are known to exhibit a large MOKE, as they are weak ferromagnets due to canting of the otherwise collinear spin structure. Here we report the first observation of a large MOKE signal in an AF metal at room temperature. In particular, we find that despite a vanishingly small magnetization of $M sim$0.002 $mu_{rm B}$/Mn, the non-collinear AF metal Mn$_3$Sn exhibits a large zero-field MOKE with a polar Kerr rotation angle of 20 milli-degrees, comparable to ferromagnetic metals. Our first-principles calculations have clarified that ferroic ordering of magnetic octupoles in the non-collinear Neel state may cause a large MOKE even in its fully compensated AF state without spin magnetization. This large MOKE further allows imaging of the magnetic octupole domains and their reversal induced by magnetic field. The observation of a large MOKE in an AF metal should open new avenues for the study of domain dynamics as well as spintronics using AFMs.
298 - Bo Gu , Saburo Takahashi , 2017
Using density functional theory calculations, we have found an enhanced magneto-optical Kerr effect in Fe/insulator interfaces. The results of our study indicate that interfacial Fe atoms in the Fe films have a low-dimensional nature, which causes the following two effects: (i) The diagonal component $sigma_{xx}$ of the optical conductivity decreases dramatically because the hopping integral for electrons between Fe atoms is suppressed by the low dimensionality. (ii) The off-diagonal component $sigma_{xy}$ of the optical conductivity does not change at low photon energies, but it is enhanced at photon energies around 2 eV, where we obtain enhanced orbital magnetic moments and spin-orbit correlations for the interfacial Fe atoms. A large Kerr angle develops in proportion to the ratio $sigma_{xy}/sigma_{xx}$. Our findings indicate an efficient way to enhance the effect of spin-orbit coupling at metal/insulator interfaces without using heavy elements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا