Do you want to publish a course? Click here

Probing Scalar Coupling Differences via Long-Lived Singlet States

75   0   0.0 ( 0 )
 Added by Stephen DeVience
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We probe small scalar coupling differences via the coherent interactions between two nuclear spin singlet states in organic molecules. We show that the spin-lock induced crossing (SLIC) technique enables the coherent transfer of singlet order between one spin pair and another. The transfer is mediated by the difference in cis and trans vicinal J couplings among the spins. By measuring the transfer rate, we calculate a J coupling difference of $8 pm 2$ mHz in phenylalanine-glycine-glycine and $2.57 pm 0.04$ Hz in glutamate. We also characterize a coherence between two singlet states in glutamate, which may enable the creation of a long-lived quantum memory.



rate research

Read More

There has been much recent interest in long-lived massive particles at the LHC, understood as those with lifetimes between tens of micrometers and several meters. In this context we consider the possibility of long-lived electroweak singlet scalars charged under colour $mathrm{SU}(3)$ with masses near a TeV. The shortest lifetime of interest is already longer than typical hadronisation scales. These exotic new particles would therefore appear as colour singlet bound states of the new scalars with quarks and gluons and it is their colour charge that prevents them from decaying. In particular we consider colour representations consistent with maintaining asymptotic freedom, those with dimensionality $d_R leq 15$. We find that only the octets can decay, and they do so into multi-jet final states through the two-gluon channel. The other representations are stable and form fractionally charged colour singlets, with the decuplet being the only one that can form electrically neutral colour singlets.
We introduce a broadly applicable technique to create nuclear spin singlet states in organic molecules and other many-atom systems. We employ a novel pulse sequence to produce a spin-lock induced crossing (SLIC) of the spin singlet and triplet energy levels, which enables triplet/singlet polarization transfer and singlet state preparation. We demonstrate the utility of the SLIC method by producing a long-lived nuclear spin singlet state on two strongly-coupled proton pairs in the tripeptide molecule phenylalanine-glycine-glycine dissolved in D2O, and by using SLIC to measure the J-couplings, chemical shift differences, and singlet lifetimes of the proton pairs. We show that SLIC is more efficient at creating nearly-equivalent nuclear spin singlet states than previous pulse sequence techniques, especially when triplet/singlet polarization transfer occurs on the same timescale as spin-lattice relaxation.
104 - Q. Chen , I. Schwarz , 2017
The coherent high-fidelity generation of nuclear spins in long-lived singlet states which may find application as quantum memory or sensor represents a considerable experimental challenge. Here we propose a dissipative scheme that achieves the preparation of pairs of nuclear spins in long-lived singlet states by a protocol that combines the interaction between the nuclei and a periodically reset electron spin of an NV center with local rf-control of the nuclear spins. The final state of this protocol is independent of the initial preparation of the nuclei, is robust to external field fluctuations and can be operated at room temperature. We show that a high fidelity singlet pair of a 13C dimer in a nuclear bath in diamond can be generated under realistic experimental conditions.
Ensembles of electron spins in hybrid microwave systems are powerful and versatile components for future quantum technologies. Quantum memories with high storage capacities are one such example which require long-lived states that can be addressed and manipulated coherently within the inhomogeneously broadened ensemble. This broadening is essential for true multimode memories, but induces a considerable spin dephasing and together with dissipation from a cavity interface poses a constraint on the memorys storage time. In this work we show how to overcome both of these limitations through the engineering of long-lived dark states in an ensemble of electron spins hosted by nitrogen-vacancy centres in diamond. By burning narrow spectral holes into a spin ensemble strongly coupled to a superconducting microwave cavity, we observe long-lived Rabi oscillations with high visibility and a decay rate that is a factor of forty smaller than the spin ensemble linewidth and thereby a factor of more than three below the pure cavity dissipation rate. This significant reduction lives up to the promise of hybrid devices to perform better than their individual subcomponents. To demonstrate the potential of our approach we realise the first step towards a solid-state microwave spin multiplexer by engineering multiple long-lived dark states. Our results show that we can fully access the decoherence free subspace in our experiment and selectively prepare protected states by spectral hole burning. This technique opens up the way for truly long-lived quantum memories, solid-state microwave frequency combs, optical to microwave quantum transducers and spin squeezed states. Our approach also paves the way for a new class of cavity QED experiments with dense spin ensembles, where dipole spin-spin interactions become important and many-body phenomena will be directly accessible on a chip.
The formation of exciton-polaritons allows the transport of energy over hundreds of nanometres at velocities up to 10^6 m s^-1 in organic semiconductors films in the absence of external cavity structures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا