Magnetic excitations in the strong-leg quantum spin ladder compound (C$_7$H$_{10}$N)$_2$CuBr$_4$ (known as DIMPY) in the field-induced Tomonaga-Luttinger spin liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual non-linear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe its ESR observability to the uniform Dzyaloshinskii-Moriya interaction.
We present NMR measurements of a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4 under magnetic fields up to 15 T in the temperature range from 1.2 K down to 50 mK. From the splitting of NMR lines we determine the phase boundary and the order parameter of the low-temperature (3-dimensional) long-range-ordered phase. In the Tomonaga-Luttinger regime above the ordered phase, NMR relaxation reflects characteristic power-law decay of spin correlation functions as 1/T1 T^(1/2K-1), which allows us to determine the interaction parameter K as a function of field. We find that field-dependent K varies within the 1<K<2 range which signifies attractive interaction between the spinless fermions in the Tomonaga-Luttinger liquid.
In a one-dimensional (1D) system of interacting electrons, excitations of spin and charge travel at different speeds, according to the theory of a Tomonaga-Luttinger Liquid (TLL) at low energies. However, the clear observation of this spin-charge separation is an ongoing challenge experimentally. We have fabricated an electrostatically-gated 1D system in which we observe spin-charge separation and also the predicted power-law suppression of tunnelling into the 1D system. The spin-charge separation persists even beyond the low-energy regime where the TLL approximation should hold. TLL effects should therefore also be important in similar, but shorter, electrostatically gated wires, where interaction effects are being studied extensively worldwide.
We study both noncentrosymmetric and time-reversal breaking Weyl semimetal systems under a strong magnetic field with the Coulomb interaction. The three-dimensional bulk system is reduced to many mutually interacting quasi-one-dimensional wires. Each strongly correlated wire can be approached within the Tomonaga-Luttinger liquid formalism. Including impurity scatterings, we inspect the localization effect and the temperature dependence of the electrical resistivity. The effect of a large number of Weyl points in real materials is also discussed.
While the vast majority of known physical realizations of the Tomonaga-Luttinger liquid (TLL) have repulsive interactions defined with the dimensionless interaction parameter $K_{rm c}<1$, we here report that Rb$_2$Mo$_3$As$_3$ is in the opposite TLL regime of attractive interactions. This is concluded from a TLL-characteristic power-law temperature dependence of the $^{87}$Rb spin-lattice relaxation rates over broad temperature range yielding the TLL interaction parameter for charge collective modes $K_{rm c}=1.4$. The TLL of the one-dimensional band can be traced almost down to $T_{rm c} = 10.4 $~K, where the bulk superconducting state is stabilized by the presence of a three-dimensional band and characterized by the $^{87}$Rb temperature independent Knight shift and the absence of Hebel-Slichter coherence peak in the relaxation rates. The small superconducting gap measured in high magnetic fields reflects either the importance of the vortex core relaxation or the uniqueness of the superconducting state stemming from the attractive interactions defining the precursor TLL.
The phase diagram in temperature and magnetic field of the metal-organic, two-leg, spin-ladder compound (C5H12N)2CuBr4 is studied by measurements of the specific heat and the magnetocaloric effect. We demonstrate the presence of an extended spin Luttinger-liquid phase between two field-induced quantum critical points and over a broad range of temperature. Based on an ideal spin-ladder Hamiltonian, comprehensive numerical modelling of the ladder specific heat yields excellent quantitative agreement with the experimental data across the complete phase diagram.