No Arabic abstract
The millimeter wave (mmWave) band, which is a prime candidate for 5G cellular networks, seems attractive for wireless energy harvesting. This is because it will feature large antenna arrays as well as extremely dense base station (BS) deployments. The viability of mmWave for energy harvesting though is unclear, due to the differences in propagation characteristics such as extreme sensitivity to building blockages. This paper considers a scenario where low-power devices extract energy and/or information from the mmWave signals. Using stochastic geometry, analytical expressions are derived for the energy coverage probability, the average harvested power, and the overall (energy-and-information) coverage probability at a typical wireless-powered device in terms of the BS density, the antenna geometry parameters, and the channel parameters. Numerical results reveal several network and device level design insights. At the BSs, optimizing the antenna geometry parameters such as beamwidth can maximize the network-wide energy coverage for a given user population. At the device level, the performance can be substantially improved by optimally splitting the received signal for energy and information extraction, and by deploying multi-antenna arrays. For the latter, an efficient low-power multi-antenna mmWave receiver architecture is proposed for simultaneous energy and information transfer. Overall, simulation results suggest that mmWave energy harvesting generally outperforms lower frequency solutions.
Energy harvesting multi-hop networks allow for perpetual operation of low cost, limited range wireless devices. Compared with their battery operated counterparts, the coupling of energy and data causality constraints with half duplex relay operation makes it challenging to operate such networks. In this paper, a throughput maximization problem for energy harvesting two-hop networks with decode-and-forward half-duplex relays is investigated. For a system with two parallel relays, various combinations of the following four transmission modes are considered: Broadcast from the source, multi-access from the relays, and successive relaying phases I and II. Optimal transmission policies for one and two parallel relays are studied under the assumption of non-causal knowledge of energy arrivals and finite size relay data buffers. The problem is formulated using a convex optimization framework, which allows for efficient numerical solutions and helps identify important properties of optimal policies. Numerical results are presented to provide throughput comparisons and to investigate the impact of multiple relays, size of relay data buffers, transmission modes, and energy harvesting on the throughput.
The problem of finding decentralized transmission policies in a wireless communication network with energy harvesting constraints is formulated and solved using the decentralized Markov decision process framework. The proposed policy defines the transmission probabilities of all devices so as to correctly balance the collision probabilities with the energy constraints. After an initial coordination phase, in which the network parameters are initialized for all devices, every node proceeds in a fully decentralized fashion. We numerically show that, because of the harvesting, a fully orthogonal scheme (e.g., TDMA-like) is sub-optimal in this scenario, and that the optimal trade-off lies between an orthogonal and a completely symmetric system.
This paper analyzes the communication between two energy harvesting wireless sensor nodes. The nodes use automatic repeat request and forward error correction mechanism for the error control. The random nature of available energy and arrivals of harvested energy may induce interruption to the signal sampling and decoding operations. We propose a selective sampling scheme where the length of the transmitted packet to be sampled depends on the available energy at the receiver. The receiver performs the decoding when complete samples of the packet are available. The selective sampling information bits are piggybacked on the automatic repeat request messages for the transmitter use. This way, the receiver node manages more efficiently its energy use. Besides, we present the partially observable Markov decision process formulation, which minimizes the long-term average pairwise error probability and optimizes the transmit power. Optimal and suboptimal power assignment strategies are introduced for retransmissions, which are adapted to the selective sampling and channel state information. With finite battery size and fixed power assignment policy, an analytical expression for the average packet drop probability is derived. Numerical simulations show the performance gain of the proposed scheme with power assignment strategy over the conventional scheme.
We consider channel/subspace tracking systems for temporally correlated millimeter wave (e.g., E-band) multiple-input multiple-output (MIMO) channels. Our focus is given to the tracking algorithm in the non-line-of-sight (NLoS) environment, where the transmitter and the receiver are equipped with hybrid analog/digital precoder and combiner, respectively. In the absence of straightforward time-correlated channel model in the millimeter wave MIMO literature, we present a temporal MIMO channel evolution model for NLoS millimeter wave scenarios. Considering that conventional MIMO channel tracking algorithms in microwave bands are not directly applicable, we propose a new channel tracking technique based on sequentially updating the precoder and combiner. Numerical results demonstrate the superior channel tracking ability of the proposed technique over independent sounding approach in the presented channel model and the spatial channel model (SCM) adopted in 3GPP specification.
Wireless energy harvesting is regarded as a promising energy supply alternative for energy-constrained wireless networks. In this paper, a new wireless energy harvesting protocol is proposed for an underlay cognitive relay network with multiple primary user (PU) transceivers. In this protocol, the secondary nodes can harvest energy from the primary network (PN) while sharing the licensed spectrum of the PN. In order to assess the impact of different system parameters on the proposed network, we first derive an exact expression for the outage probability for the secondary network (SN) subject to three important power constraints: 1) the maximum transmit power at the secondary source (SS) and at the secondary relay (SR), 2) the peak interference power permitted at each PU receiver, and 3) the interference power from each PU transmitter to the SR and to the secondary destination (SD). To obtain practical design insights into the impact of different parameters on successful data transmission of the SN, we derive throughput expressions for both the delay-sensitive and the delay-tolerant transmission modes. We also derive asymptotic closed-form expressions for the outage probability and the delay-sensitive throughput and an asymptotic analytical expression for the delay-tolerant throughput as the number of PU transceivers goes to infinity. The results show that the outage probability improves when PU transmitters are located near SS and sufficiently far from SR and SD. Our results also show that when the number of PU transmitters is large, the detrimental effect of interference from PU transmitters outweighs the benefits of energy harvested from the PU transmitters.