Do you want to publish a course? Click here

Quantum nondemolition measurement of a nonclassical state of a massive object

64   0   0.0 ( 0 )
 Added by Florent Lecocq
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

While quantum mechanics exquisitely describes the behavior of microscopic systems, one ongoing challenge is to explore its applicability to systems of larger size and mass. Unfortunately, quantum states of increasingly macroscopic objects are more easily corrupted by unintentional measurements from the classical environment. Additionally, even the intentional measurements from the observer can further perturb the system. In optomechanics, coherent light fields serve as the intermediary between the fragile mechanical states and our inherently classical world by exerting radiation pressure forces and extracting mechanical information. Here we engineer a microwave cavity optomechanical system to stabilize a nonclassical steady-state of motion while independently, continuously, and nondestructively monitoring it. By coupling the motion of an aluminum membrane to two microwave cavities, we separately prepare and measure a squeezed state of motion. We demonstrate a quantum nondemolition (QND) measurement of sub-vacuum mechanical quadrature fluctuations. The techniques developed here have direct applications in the areas of quantum-enhanced sensing and quantum information processing, and could be further extended to more complex quantum states.



rate research

Read More

Quantum jumps of a qubit are usually observed between its energy eigenstates, also known as its longitudinal pseudo-spin component. Is it possible, instead, to observe quantum jumps between the transverse superpositions of these eigenstates? We answer positively by presenting the first continuous quantum nondemolition measurement of the transverse component of an individual qubit. In a circuit QED system irradiated by two pump tones, we engineer an effective Hamiltonian whose eigenstates are the transverse qubit states, and a dispersive measurement of the corresponding operator. Such transverse component measurements are a useful tool in the driven-dissipative operation engineering toolbox, which is central to quantum simulation and quantum error correction.
The fields of opto- and electromechanics have facilitated numerous advances in the areas of precision measurement and sensing, ultimately driving the studies of mechanical systems into the quantum regime. To date, however, the quantization of the mechanical motion and the associated quantum jumps between phonon states remains elusive. For optomechanical systems, the coupling to the environment was shown to preclude the detection of the mechanical mode occupation, unless strong single photon optomechanical coupling is achieved. Here, we propose and analyse an electromechanical setup, which allows to overcome this limitation and resolve the energy levels of a mechanical oscillator. We find that the heating of the membrane, caused by the interaction with the environment and unwanted couplings, can be suppressed for carefully designed electromechanical systems. The results suggest that phonon number measurement is within reach for modern electromechanical setups.
The sum gate is the canonical two-mode gate for universal quantum computation based on continuous quantum variables. It represents the natural analogue to a qubit C-NOT gate. In addition, the continuous-variable gate describes a quantum nondemolition (QND) interaction between the quadrature components of two light fields. We experimentally demonstrate a QND sum gate, employing the scheme by R. Filip, P. Marek, and U.L. Andersen [pra {bf 71}, 042308 (2005)], solely based on offline squeezed states, homodyne measurements, and feedforward. The results are verified by simultaneously satisfying the criteria for QND measurements in both conjugate quadratures.
The ability to nondestructively detect the presence of a single, traveling photon has been a long-standing goal in optics, with applications in quantum information and measurement. Realising such a detector is complicated by the fact that photon-photon interactions are typically very weak. At microwave frequencies, very strong effective photon-photon interactions in a waveguide have recently been demonstrated. Here we show how this type of interaction can be used to realize a quantum nondemolition measurement of a single propagating microwave photon. The scheme we propose uses a chain of solid-state 3-level systems (transmons), cascaded through circulators which suppress photon backscattering. Our theoretical analysis shows that microwave-photon detection with fidelity around 90% can be realized with existing technologies.
We show that continuous quantum nondemolition (QND) measurement of an atomic ensemble is able to improve the precision of frequency estimation even in the presence of independent dephasing acting on each atom. We numerically simulate the dynamics of an ensemble with up to N = 150 atoms initially prepared in a (classical) spin coherent state, and we show that, thanks to the spin squeezing dynamically generated by the measurement, the information obtainable from the continuous photocurrent scales superclassically with respect to the number of atoms N. We provide evidence that such superclassical scaling holds for different values of dephasing and monitoring efficiency. We moreover calculate the extra information obtainable via a final strong measurement on the conditional states generated during the dynamics and show that the corresponding ultimate limit is nearly achieved via a projective measurement of the spin-squeezed collective spin operator. We also briefly discuss the difference between our protocol and standard estimation schemes, where the state preparation time is neglected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا