Do you want to publish a course? Click here

Localized starbursts in dwarf galaxies produced by impact of low metallicity cosmic gas clouds

112   0   0.0 ( 0 )
 Added by J. Sanchez Almeida
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter haloes. Although these predictions are unambiguous, the observational support has been indirect so far. Here we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local Universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias (GTC) optical spectra of ten XMPs show that the galaxy hosts have metallicities around 60 % solar on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6 % solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.



rate research

Read More

Stars form out of the densest parts of molecular clouds. Far-IR emission can be used to estimate the Star Formation Rate (SFR) and high dipole moment molecules, typically HCN, trace the dense gas. A strong correlation exists between HCN and Far-IR emission, with the ratio being nearly constant, over a large range of physical scales. A few recent observations have found HCN to be weak with respect to the Far-IR and CO in subsolar metallicity (low-Z) objects. We present observations of the Local Group galaxies M33, IC10, and NGC6822 with the IRAM 30meter and NRO 45m telescopes, greatly improving the sample of low-Z galaxies observed. HCN, HCO$^+$, CS, C$_2$H, and HNC have been detected. Compared to solar metallicity galaxies, the Nitrogen-bearing species are weak (HCN, HNC) or not detected (CN, HNCO, N$_2$H$^+$) relative to Far-IR or CO emission. HCO$^+$ and C$_2$H emission is normal with respect to CO and Far-IR. While $^{13}$CO is the usual factor 10 weaker than $^{12}$CO, C$^{18}$O emission was not detected down to very low levels. Including earlier data, we find that the HCN/HCO$^+$ ratio varies with metallicity (O/H) and attribute this to the sharply decreasing Nitrogen abundance. The dense gas fraction, traced by the HCN/CO and HCO$^+$/CO ratios, follows the SFR but in the low-Z objects the HCO$^+$ is much easier to measure. Combined with larger and smaller scale measurements, the HCO$^+$ line appears to be an excellent tracer of dense gas and varies linearly with the SFR for both low and high metallicities.
This review describes where we are today in light of the dust and gas properties and their relation to star formation, in low metallicity galaxies of the local universe following recent surveys from sensitive infrared space telescopes, mainly Spitzer and Herschel space observatories as well as ground-based observations of the molecular gas reservoir. Models to interpret the ISM properties are gaining sophistication in order to account for the wide range of valuable observational diagnostics that we have today to trace the different gas phases, the broad range of photometry we have, from mid-infrared to submillimetre dust emission and the various galactic size scales that we can sample today. This review summarizes the rich multi-phase observations we can exploit today, and the multi-phase modeling approach to interpret the observations.
The question how much star formation is occurring at low metallicity throughout the cosmic history appears crucial for the discussion of the origin of various energetic transients, and possibly - double black hole mergers. We revisit the observation-based distribution of birth metallicities of stars (f$_{rm SFR}$(Z,z)), focusing on several factors that strongly affect its low metallicity part: (i) the method used to describe the metallicity distribution of galaxies (redshift-dependent mass metallicity relation - MZR, or redshift-invariant fundamental metallicity relation - FMR), (ii) the contribution of starburst galaxies and (iii) the slope of the MZR. We empirically construct the FMR based on the low-redshift scaling relations, which allows us to capture the systematic differences in the relation caused by the choice of metallicity and star formation rate (SFR) determination techniques and discuss the related f$_{rm SFR}$(Z,z) uncertainty. We indicate factors that dominate the f$_{rm SFR}$(Z,z) uncertainty in different metallicity and redshift regimes. The low metallicity part of the distribution is poorly constrained even at low redshifts (even a factor of $sim$200 difference between the model variations) The non-evolving FMR implies a much shallower metallicity evolution than the extrapolated MZR, however, its effect on the low metallicity part of the f$_{rm SFR}$(Z,z) is counterbalanced by the contribution of starbursts (assuming that they follow the FMR). A non-negligible fraction of starbursts in our model may be necessary to satisfy the recent high-redshift SFR density constraints.
We study low-metallicity star formation with a set of high-resolution hydrodynamics simulations for various gas metallicities over a wide range $0$--$10^{-3} {rm Z}_{bigodot}$. Our simulations follow non-equilibrium chemistry and radiative cooling by adopting realistic elemental abundances and dust size distribution. We examine the condition for the fragmentation of collapsing clouds (cloud fragmentation; CF) and of accretion discs (disc fragmentation; DF). We find that CF is suppressed due to rapid gas heating accompanied with molecular hydrogen formation, whereas DF occurs in almost all our simulations regardless of gas metallicities. We also find that, in the accretion discs, the growth of the protostellar systems is overall oligarchic. The primary protostar grows through the accretion of gas, and secondary protostars form through the interaction of spiral arms or the break-up of a rapidly rotating protostar. Despite vigorous fragmentation, a large fraction of secondary protostars are destroyed through mergers or tidal disruption events with other protostars. For a few hundred years after the first adiabatic core formation, only several protostars survive in a disc, and the total mass of protostars is $0.52$--$3.8 {rm M}_{bigodot}$.
103 - Federico Lelli 2014
Strong bursts of star formation in galaxies may be triggered either by internal or external mechanisms. We study the distribution and kinematics of the HI gas in the outer regions of 18 nearby starburst dwarf galaxies, that have accurate star-formation histories from HST observations of resolved stellar populations. We find that starburst dwarfs show a variety of HI morphologies, ranging from heavily disturbed HI distributions with major asymmetries, long filaments, and/or HI-stellar offsets, to lopsided HI distributions with minor asymmetries. We quantify the outer HI asymmetry for both our sample and a control sample of typical dwarf irregulars. Starburst dwarfs have more asymmetric outer HI morphologies than typical irregulars, suggesting that some external mechanism triggered the starburst. Moreover, galaxies hosting an old burst (>100 Myr) have more symmetric HI morphologies than galaxies hosting a young one (<100 Myr), indicating that the former ones probably had enough time to regularize their outer HI distribution since the onset of the burst. We also investigate the nearby environment of these starburst dwarfs and find that most of them ($sim$80$%$) have at least one potential perturber at a projected distance <200 kpc. Our results suggest that the starburst is triggered either by past interactions/mergers between gas-rich dwarfs or by direct gas infall from the IGM.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا