Do you want to publish a course? Click here

Dwarf Galaxies: Their Low Metallicity Interstellar Medium

68   0   0.0 ( 0 )
 Added by Suzanne Madden
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

This review describes where we are today in light of the dust and gas properties and their relation to star formation, in low metallicity galaxies of the local universe following recent surveys from sensitive infrared space telescopes, mainly Spitzer and Herschel space observatories as well as ground-based observations of the molecular gas reservoir. Models to interpret the ISM properties are gaining sophistication in order to account for the wide range of valuable observational diagnostics that we have today to trace the different gas phases, the broad range of photometry we have, from mid-infrared to submillimetre dust emission and the various galactic size scales that we can sample today. This review summarizes the rich multi-phase observations we can exploit today, and the multi-phase modeling approach to interpret the observations.



rate research

Read More

The Interstellar Medium (ISM) comprises gases at different temperatures and densities, including ionized, atomic, molecular species, and dust particles. The neutral ISM is dominated by neutral hydrogen and has ionization fractions up to 8%. The concentration of chemical elements heavier than helium (metallicity) spans orders of magnitudes in Galactic stars, because they formed at different times. Instead, the gas in the Solar vicinity is assumed to be well mixed and have Solar metallicity in traditional chemical evolution models. The ISM chemical abundances can be accurately measured with UV absorption-line spectroscopy. However, the effects of dust depletion, which removes part of the metals from the observable gaseous phase and incorporates it into solid grains, have prevented, until recently, a deeper investigation of the ISM metallicity. Here we report the dust-corrected metallicity of the neutral ISM measured towards 25 stars in our Galaxy. We find large variations in metallicity over a factor of 10 (with an average 55 +/- 7% Solar and standard deviation 0.28 dex) and including many regions of low metallicity, down to ~17% Solar and possibly below. Pristine gas falling onto the disk in the form of high-velocity clouds can cause the observed chemical inhomogeneities on scales of tens of pc. Our results suggest that this low-metallicity accreting gas does not efficiently mix into the ISM, which may help us understand metallicity deviations in nearby coeval stars.
Dwarf spheroidal galaxies are among the most numerous galaxy population in the Universe, but their main formation and evolution channels are still not well understood. The three dwarf spheroidal satellites (NGC147, NGC185, and NGC205) of the Andromeda galaxy are characterised by very different interstellar medium (ISM) properties, which might suggest them being at different galaxy evolutionary stages. While the dust content of NGC205 has been studied in detail by De Looze et al. (2012), we present new Herschel dust continuum observations of NGC147 and NGC185. The non-detection of NGC147 in Herschel SPIRE maps puts a strong constraint on its dust mass (< 128 Msun). For NGC185, we derive a total dust mass M_d = 5.1 x 10^3 Msun, which is a factor of ~2-3 higher than that derived from ISO and Spitzer observations and confirms the need for longer wavelength observations to trace more massive cold dust reservoirs. We, furthermore, estimate the dust production by asymptotic giant branch (AGB) stars and supernovae (SNe). For NGC147, the upper limit on the dust mass is consistent with expectations of the material injected by the evolved stellar population. In NGC185 and NGC205, the observed dust content is one order of magnitude higher compared to the estimated dust production by AGBs and SNe. Efficient grain growth, and potentially longer dust survival times (3-6 Gyr) are required to account for their current dust content. Our study confirms the importance of grain growth in the gas phase to account for the current dust reservoir in galaxies.
The current Lambda CDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (M_r > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.
123 - Roger L. Griffith 2011
We report two new low metallicity blue compact dwarf galaxies (BCDs), WISEP J080103.93+264053.9 (hereafter W0801+26) and WISEP J170233.53+180306.4 (hereafter W1702+18), discovered using the Wide-field Infrared Survey Explorer (WISE). We identified these two BCDs from their extremely red colors at mid-infrared wavelengths, and obtained follow-up optical spectroscopy using the Low Resolution Imaging Spectrometer on Keck I. The mid-infrared properties of these two sources are similar to the well studied, extremely low metallicity galaxy SBS 0335-052E. We determine metallicities of 12 + log(O/H) = 7.75 and 7.63 for W0801+26 and W1702+18, respectively, placing them amongst a very small group of very metal deficient galaxies (Z < 1/10 Zsun). Their > 300 Angstrom Hbeta equivalent widths, similar to SBS 0335-052E, imply the existence of young (< 5 Myr) star forming regions. We measure star formation rates of 2.6 and 10.9 Msun/yr for W0801+26 and W1702+18, respectively. These BCDs, showing recent star formation activity in extremely low metallicity environments, provide new laboratories for studying star formation in extreme conditions and are low-redshift analogs of the first generation of galaxies to form in the universe. Using the all-sky WISE survey, we discuss a new method to identify similar star forming, low metallicity BCDs.
We make an inventory of the interstellar medium material in three low-metallicity dwarf spheroidal galaxies of the Local Group (NGC147, NGC185 and NGC205). Ancillary HI, CO, Spitzer IRS spectra, H{alpha} and X-ray observations are combined to trace the atomic, cold and warm molecular, ionised and hot gas phases. We present new Nobeyama CO(1-0) observations and Herschel SPIRE FTS [CI] observations of NGC205 to revise its molecular gas content. We derive total gas masses of M_gas = 1.9-5.5x10^5 Msun for NGC185 and M_gas = 8.6-25.0x10^5 Msun for NGC205. Non-detections combine to an upper limit on the gas mass of M_gas =< 0.3-2.2x10^5 Msun for NGC147. The observed gas reservoirs are significantly lower compared to the expected gas masses based on a simple closed-box model that accounts for the gas mass returned by planetary nebulae and supernovae. The gas-to-dust mass ratios GDR~37-107 and GDR~48-139 are also considerably lower compared to the expected GDR~370 and GDR~520 for the low metal abundances in NGC 185 (0.36 Zsun) and NGC205 (0.25 Zsun), respectively. To simultaneously account for the gas deficiency and low gas-to-dust ratios, we require an efficient removal of a large gas fraction and a longer dust survival time (~1.6 Gyr). We believe that efficient galactic winds (combined with heating of gas to sufficiently high temperatures in order for it to escape from the galaxy) and/or environmental interactions with neighbouring galaxies are responsible for the gas removal from NGC147, NGC185 and NGC205.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا