Do you want to publish a course? Click here

Thermofield Duality for Higher Spin Rindler Gravity

175   0   0.0 ( 0 )
 Added by Kenta Suzuki
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We study the Thermo-field realization of the duality between the Rindler-AdS higher spin theory and $O(N)$ vector theory. The CFT represents a decoupled pair of free $O(N)$ vector field theories. It is shown how this decoupled domain CFT is capable of generating the connected Rindler-AdS background with the full set of Higher Spin fields.



rate research

Read More

We develop a general formalism of duality rotations for bosonic conformal spin-$s$ gauge fields, with $sgeq 2$, in a conformally flat four-dimensional spacetime. In the $s=1$ case this formalism is equivalent to the theory of $mathsf{U}(1)$ duality-invariant nonlinear electrodynamics developed by Gaillard and Zumino, Gibbons and Rasheed, and generalised by Ivanov and Zupnik. For each integer spin $sgeq 2$ we demonstrate the existence of families of conformal $mathsf{U}(1)$ duality-invariant models, including a generalisation of the so called ModMax Electrodynamics ($s=1$). Our bosonic results are then extended to the $mathcal{N}=1$ and $mathcal{N}=2$ supersymmetric cases. We also sketch a formalism of duality rotations for conformal gauge fields of Lorentz type $(m/2, n/2)$, for positive integers $m $ and $n$.
We propose an approach to compute one-loop corrections to the four-point amplitude in the higher spin gravities that are holographically dual to free $O(N)$, $U(N)$ and $USp(N)$ vector models. We compute the double-particle cut of one-loop diagrams by expressing them in terms of tree level four-point amplitudes. We then discuss how the remaining contributions to the complete one-loop diagram can be computed. With certain assumptions we find nontrivial evidence for the shift in the identification of the bulk coupling constant and $1/N$ in accordance with the previously established result for the vacuum energy.
The linearized spectrum and the algebra of global symmetries of conformal higher-spin gravity decompose into infinitely many representations of the conformal algebra. Their characters involve divergent sums over spins. We propose a suitable regularization adapted to their evaluation and observe that their characters are actually equal. This result holds in the case of type-A and type-B (and their higher-depth generalizations) theories and confirms previous observations on a remarkable rearrangement of dynamical degrees of freedom in conformal higher-spin gravity after regularization.
We present exact solutions to Vasilievs bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras are infinite dimensional higher-spin extensions of spacetime isometries generated by six Killing vectors. The solutions presented are obtained by using a method of holomorphic factorization in noncommutative twistor space and gauge functions. In interpreting the solutions in terms of Fronsdal-type fields in spacetime, a field-dependent higher spin transformation is required, which is implemented at leading order. To this order, the scalar field solves Klein-Gordon equation with conformal mass in (anti) de Sitter space. We interpret the FRW solution with de Sitter asymptotics in the context of inflationary cosmology and we expect that the domain wall and FRW solutions are associated with spontaneously broken scaling symmetries in their holographic description. We observe that the factorization method provides a convenient framework for setting up a perturbation theory around the exact solutions, and we propose that the nonlinear completion of particle excitations over FRW and domain wall solutions requires black hole-like states.
We study the spectrum of pure massless higher spin theories in $AdS_3$. The light spectrum is given by a tower of massless particles of spin $s=2,cdots,N$ and their multi-particles states. Their contribution to the torus partition function organises into the vacuum character of the ${cal W}_N$ algebra. Modular invariance puts constraints on the heavy spectrum of the theory, and in particular leads to negative norm states, which would be inconsistent with unitarity. This negativity can be cured by including additional light states, below the black hole threshold but whose mass grows with the central charge. We show that these states can be interpreted as conical defects with deficit angle $2pi(1-1/M)$. Unitarity allows the inclusion of such defects into the path integral provided $M geq N$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا