No Arabic abstract
We demonstrate a gain-switched thulium fiber laser that can be continuously tuned over 140 nm, while maintaining stable nanosecond single-pulse operation. To the best of our knowledge, this system represents the broadest tuning range for a gain-switched fiber laser. The system simplicity and wideband wavelength tunability combined with the ability to control the temporal characteristics of the gain-switched pulses mean this is a versatile source highly suited to a wide range of applications in the eye-safe region of the infrared, including spectroscopy, sensing and material processing, as well as being a practical seed source for pumping nonlinear processes.
We report on a monolithic thulium fiber laser with 567 W output power at 1970 nm, which is the highest power reported so far directly from a thulium oscillator. This is achieved by optimization of the splice parameters for the active fiber (minimizing signal light in the fiber cladding) and direct water cooling. Dual transverse mode operation is visible from the optical spectrum and can also be deduced from the measured beam quality of M^2 = 2.6. c{opyright} 2016 Optical Society of America under Open Access Publishing Agreement. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.
We investigate the buildup dynamics of broadband Q-switched noise-like pulse (QS-NLP) driven by slow gain dynamics in a microfiber-based passively mode-locked Yb-doped fiber laser. Based on shot-to-shot tracing of the transient optical spectra and qualitatively reproduced numerial simulation, we demonstrate that slow gain dynamics is deeply involved in the onset of such complex temporal and spectral instabilities of QS-NLP. The proposed dynamic model in this work could contribute to deeper insight of such nonlinear dynamics and transient dynamics simulation in ultrafast fiber laser.
Dissipative Kerr solitons (DKSs) have been generated via injection locking of chipscale microresonators to continuous-wave (CW) III-V lasers. This advance has enabled fully integrated hybrid microcomb systems that operate in turnkey mode and can access microwave repetition rates. Yet, CW-driven DKS exhibits low energy conversion efficiency and high optical power threshold, especially when the repetition rate is within the microwave range that is convenient for direct detection with off-the-shelf electronics. Efficient DKS can be generated by spatiotemporally structured light (i.e., pulsed pumping), which to date however has required complex cascaded modulators for pulse synthesis. Here we demonstrate a photonic integrated approach to pulsed pumping. By actively switching the bias current of injection-locked III-V semiconductor lasers with switching frequencies in the X-band and K-band microwave ranges, we pump a crystalline and integrated microresonators with coherent picosecond laser pulses, achieving DKS generation with stable repetition rates and lowering the required average pumping power by one order of magnitude to a record-setting level of a few milliwatts. In addition, we unveil the critical role of the phase profile of the pumping pulses, and for the first time implement phase engineering on the pulsed pumping scheme by either accessing a multimode lasing regime in the gain-switching mode or applying external chirping to support robust single-soliton generation. Our work leverages the advantages of gain switching technique and pulse pumping technique, and establishes the merits of combining distinct compact frequency comb platforms that enhance the potential of energy-efficient chipscale microcombs.
We report a phenomenon of self-sweeping in a bi-directional ring thulium-doped fiber laser, for the first time. The laser is spontaneously sweeping in both directions at a rate up to 0.2 nm/s with 15 nm sweeping range in 1.95 {mu}m wavelength region. The laser output is switchable between two different working modes: periodical spontaneous laser line sweeping with generation of microsecond pulses in time domain; or static central wavelength with amplitude modulated temporally.
We present a laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 terahertz of bandwidth, from 660 nm to 2000 nm. The system generates 1.2 nJ, 70 fs pulses at 1050 nm by amplifying the 1580 nm laser light in Er:fiber, followed by nonlinear broadening to 1050 nm and amplification in Yb:fiber. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1050 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.