Do you want to publish a course? Click here

Competing Magnetic Fluctuations in Iron Pnictide Superconductors: Role of Ferromagnetic Spin Correlations Revealed by NMR

109   0   0.0 ( 0 )
 Added by Yuji Furukawa
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic (AFM) and in-plane ferromagnetic (FM) wavevectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using $^{75}$As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe$_2$As$_2$ families of iron-pnictide superconductors. These FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of $T_{rm c}$ and the shape of the superconducting dome in these and other iron-pnictide families.

rate research

Read More

Insight into the electronic structure of the pnictide family of superconductors is obtained from quantum oscillation measurements. Here we review experimental quantum oscillation data that reveal a transformation from large quasi-two dimensional electron and hole cylinders in the paramagnetic overdoped members of the pnictide family to significantly smaller three-dimensional Fermi surface sections in the antiferromagnetic parent members, via a potential quantum critical point at which an effective mass enhancement is observed. Similarities with the Fermi surface evolution from the overdoped to the underdoped normal state of the cuprate superconducting family are discussed, along with the enhancement in antiferromagnetic correlations in both these classes of materials, and the potential implications for superconductivity.
111 - P. Wiecki , K. Rana , A. E. Bohmer 2018
We present $^{77}$Se-NMR measurements on FeSe$_{1-x}$S$_x$ samples with sulfur content $x=0,9,15$ and $29%$. Twinned nematic domains are observed in the NMR spectrum for all samples except $x=29%$. The NMR spin-lattice relaxation rate shows that magnetic fluctuations are initially enhanced between $x=0%$ and $x=9%$, but are strongly suppressed for higher $x$ values. The observed behavior of the magnetic fluctuations parallels the superconducting transition temperature $T_c$ in these materials, providing strong evidence for the primary importance of magnetic fluctuations for superconductivity, despite the presence of nematic quantum criticality in this system.
168 - J. Cui , P. Wiecki , S. Ran 2016
Recent nuclear magnetic resonance (NMR) measurements revealed the coexistence of stripe-type antiferromagnetic (AFM) and ferromagnetic (FM) spin correlations in both the hole- and electron-doped BaFe$_2$As$_2$ families of iron-pnictide superconductors by a Korringa ratio analysis. Motivated by the NMR work, we investigate the possible existence of FM fluctuations in another iron pnictide superconducting family, Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$. We re-analyzed our previously reported data in terms of the Korringa ratio and found clear evidence for the coexistence of stripe-type AFM and FM spin correlations in the electron-doped CaFe$_2$As$_2$ system. These NMR data indicate that FM fluctuations exist in general in iron-pnictide superconducting families and thus must be included to capture the phenomenology of the iron pnictides.
151 - Wei-Guo Yin , Chi-Cheng Lee , 2010
The varying metallic antiferromagnetic correlations observed in iron-based superconductors are unified in a model consisting of both itinerant electrons and localized spins. The decisive factor is found to be the sensitive competition between the superexchange antiferromagnetism and the orbital-degenerate double-exchange ferromagnetism. Our results reveal the crucial role of Hunds rule coupling for the strongly correlated nature of the system and suggest that the iron-based superconductors are closer kin to manganites than cuprates in terms of their diverse magnetism and incoherent normal-state electron transport. This unified picture would be instrumental for exploring other exotic properties and the mechanism of superconductivity in this new class of superconductors.
124 - Y. Ihara , T. Hattori , K. Ishida 2010
We have carried out direction-dependent ^{59}Co NMR experiments on a single crystal sample of the ferromagnetic superconductor UCoGe in order to study the magnetic properties in the normal state. The Knight shift and nuclear spin-lattice relaxation rate measurements provide microscopic evidence that both static and dynamic susceptibilities are ferromagnetic with strong Ising anisotropy. We discuss that superconductivity induced by these magnetic fluctuations prefers spin-triplet pairing state.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا