Do you want to publish a course? Click here

Fitting and forecasting non-linear coupled dark energy

205   0   0.0 ( 0 )
 Added by Santiago Casas
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range $z=0-1.6$ and wave modes below $k=10 text{h/Mpc}$. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, $beta^{2}$, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.



rate research

Read More

We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving $omega$ models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter $xi$ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter $sigma_v$. To quantify the importance of modelling the interaction, we create mock data sets for varying values of $xi$ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a $xi=0$ modelling, ignoring the interaction. We find the fiducial growth parameter $f$ is generally recovered even for very large values of $xi$ both at $z=0.5$ and $z=1$. The $xi=0$ modelling is most biased in its estimation of $f$ for the phantom $omega=-1.1$ case.
Cosmology with a three-form field interacting with cold dark matter is considered. In particular, the mass of the dark matter particles is assumed to depend upon the amplitude of the three-form field invariant. In comparison to coupled scalar field quintessence, the new features include an effective pressure contribution to the field equations that manifests both in the background and perturbation level. The dynamics of the background is analyzed, and new scaling solutions are found. A simple example model leading to a de Sitter expansion without a potential is studied. The Newtonian limit of cosmological perturbations is derived, and it is deduced that the coupling can be very tightly constrained by the large-scale structure data. This is demonstrated with numerical solutions for a model with nontrivial coupling and a quadratic potential.
We present three distinct types of models of dark energy in the form of a scalar field which is explicitly coupled to dark matter. Our construction draws from the pull-back formalism for fluids and generalises the fluid action to involve couplings to the scalar field. We investigate the cosmology of each class of model both at the background and linearly perturbed level. We choose a potential for the scalar field and a specific coupling function for each class of models and we compute the Cosmic Microwave Background and matter power spectra.
We consider cosmologies in which a dark-energy scalar field interacts with cold dark matter. The growth of perturbations is followed beyond the linear level by means of the time-renormalization-group method, which is extended to describe a multi-component matter sector. Even in the absence of the extra interaction, a scale-dependent bias is generated as a consequence of the different initial conditions for baryons and dark matter after decoupling. The effect is enhanced significantly by the extra coupling and can be at the 2-3 percent level in the range of scales of baryonic acoustic oscillations. We compare our results with N-body simulations, finding very good agreement.
In this first paper we discuss the linear theory and the background evolution of a new class of models we dub SCDEW: Strongly Coupled DE, plus WDM. In these models, WDM dominates todays matter density; like baryons, WDM is uncoupled. Dark Energy is a scalar field $Phi$; its coupling to ancillary CDM, whose todays density is $ll 1, %$, is an essential model feature. Such coupling, in fact, allows the formation of cosmic structures, in spite of very low WDM particle masses ($sim 100$ eV). SCDEW models yields Cosmic Microwave Background and linear Large Scale features substantially undistinguishable from $Lambda$CDM, but thanks to the very low WDM masses they strongly alleviate $Lambda$CDM issues on small scales, as confirmed via numerical simulations in the II associated paper. Moreover SCDEW cosmologies significantly ease the coincidence and fine tuning problems of $Lambda$CDM and, by using a field theory approach, we also outline possible links with inflationary models. We also discuss a possible fading of the coupling at low redshifts which prevents non linearities on the CDM component to cause computational problems. The (possible) low-$z$ coupling suppression, its mechanism, and its consequences are however still open questions -not necessarily problems- for SCDEW models. The coupling intensity and the WDM particle mass, although being extra parameters in respect to $Lambda$CDM, are found to be substantially constrained a priori so that, if SCDEW is the underlying cosmology, we expect most data to fit also $Lambda$CDM predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا