Do you want to publish a course? Click here

Observing The Cosmic Ray Moon Shadow With VERITAS

208   0   0.0 ( 0 )
 Added by Ralph Bird
 Publication date 2015
  fields Physics
and research's language is English
 Authors Ralph Bird




Ask ChatGPT about the research

The Earth is subjected to a uniform flux of very-high-energy (VHE, E > 100 GeV) cosmic rays unless they are obscured by an object, such as the Moon, in which case a deficit or shadow is created. Since cosmic rays are charged this deficit is deflected by the Earths magnetic field, enabling the rigidity of the obstructed cosmic rays to be determined. Measurement of the relative deficits of different species enables the positron fraction and the antiproton ratio to be measured. The April 15, 2014 lunar eclipse was visible with the VERITAS Cherenkov telescopes, which allowed (with special UV bandpass filters) 74 minutes of direct observations of the Moon and the associated deficit in the cosmic-ray flux. The results of this observation are presented. In addition VERITAS has been conducting a series of observations by pointing close to a partially illuminated Moon, with a reduced photomultiplier tube high voltage and UV bandpass filters. We present the technique developed for these observations and their current status.



rate research

Read More

We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this Moon shadow is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (> 6 sigma) in both detector configurations. The observed location of the shadow center is within 0.2 degrees of its expected position when geomagnetic deflection effects are taken into account. This measurement validates the directional reconstruction capabilities of IceCube.
One of the main objectives of the ANTARES telescope is the search for point-like neutrino sources. Both the pointing accuracy and the angular resolution of the detector are important in this context and a reliable way to evaluate this performance is needed. In order to measure the pointing accuracy of the detector, one possibility is to study the shadow of the Moon, i.e. the deficit of the atmospheric muon flux from the direction of the Moon induced by the absorption of cosmic rays. Analysing the data taken between 2007 and 2016, the Moon shadow is observed with $3.5sigma$ statistical significance. The detector angular resolution for downward-going muons is 0.73$^{circ}pm0.14^{circ}.$ The resulting pointing performance is consistent with the expectations. An independent check of the telescope pointing accuracy is realised with the data collected by a shower array detector onboard of a ship temporarily moving around the ANTARES location.
84 - R. Mukherjee 2018
Very high energy gamma-ray observations offer indirect methods for studying the highest energy cosmic rays in our Universe. The origin of cosmic rays at energies greater than $10^{18}$ eV remains a mystery, and many questions in particle astrophysics exist. The VERITAS observatory in southern Arizona, USA, carries out an extensive observation program of the gamma-ray sky at energies above 85 GeV. Observations of Galactic and extragalactic sources in the TeV band provide clues to the highly energetic processes occurring in these objects, and could provide indirect evidence for the origin of cosmic rays and the sites of particle acceleration in the Universe. VERITAS has now been operational for ten years with the complete array of four atmospheric Cherenkov telescopes. In this review, we present the status of VERITAS, and give few results from three of its key scientific programs: extragalactic science, Galactic physics, and study of fundamental physics and cosmology.
An indirect measurement of the antiproton flux in cosmic rays is possible as the particles undergo deflection by the geomagnetic field. This effect can be measured by studying the deficit in the flux, or shadow, created by the Moon as it absorbs cosmic rays that are headed towards the Earth. The shadow is displaced from the actual position of the Moon due to geomagnetic deflection, which is a function of the energy and charge of the cosmic rays. The displacement provides a natural tool for momentum/charge discrimination that can be used to study the composition of cosmic rays. Using 33 months of data comprising more than 80 billion cosmic rays measured by the High Altitude Water Cherenkov (HAWC) observatory, we have analyzed the Moon shadow to search for TeV antiprotons in cosmic rays. We present our first upper limits on the $bar{p}/p$ fraction, which in the absence of any direct measurements, provide the tightest available constraints of $sim1%$ on the antiproton fraction for energies between 1 and 10 TeV.
Compilation of papers contributed by the VERITAS Collaboration to the 33rd International Cosmic Ray Conference, held 2-9 July, 2013, in Rio de Janeiro, Brazil.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا