Do you want to publish a course? Click here

Direct Observation of Superconductivity in Calcium-Intercalated Bilayer Graphene by in situ Electrical Transport Measurements

245   0   0.0 ( 0 )
 Added by Satoru Ichinokura
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the superconductivity in Ca-intercalated bilayer graphene C$_6$CaC$_6$, the thinnest limit of Ca graphite intercalation compound. We performed textit{in situ} electrical transport measurements on pristine bilayer graphene, C$_6$LiC$_6$ and C$_6$CaC$_6$ fabricated on SiC substrate under zero and non-zero magnetic field. While both bilayer graphene and C$_6$LiC$_6$ show non-superconducting behavior, C$_6$CaC$_6$ exhibits the superconductivity with transition temperature ($T_{{rm c}}$) of 4.0 K. The observed $T_{{rm c}}$ in C$_6$CaC$_6$ and the absence of superconductivity in C$_6$LiC$_6$ show a good agreement with the theoretical prediction, suggesting the importance of a free-electron-like metallic band at the Fermi level to drive the superconductivity.



rate research

Read More

181 - I.I. Mazin , A.V. Balatsky 2008
Recent observation of proximity effect cite{Morpurgo:2007} has ignited interest in superconductivity in graphene and its derivatives. We consider Ca-intercalated graphene bilayer and argue that it is a superconductor, and likely with a sizeable $T_{c}$. We find substantial and suggestive similarities between Ca-intercalated bilayer (C$_{6}$CaC$_{6}$), and CaC$_{6} $, an established superconductor with $T_{c}$ = 11.5 K. In particular, the nearly free electron band, proven to be instrumental for superconductivity in intercalated graphites, does cross the chemical potential in (C$_{6}$CaC$% _{6}$), despite the twice smaller doping level, satisfying the so-called textquotedblleft Cambridge criteriontextquotedblright . Calculated properties of zone-center phonons are very similar to those of CaC$%_{6}.$ This suggests that the critical temperature would probably be on the same scale as in CaC$_{6}$.
Few layer graphene systems such as Bernal stacked bilayer and rhombohedral (ABC-) stacked trilayer offer the unique possibility to open an electric field tunable energy gap. To date, this energy gap has been experimentally confirmed in optical spectroscopy. Here we report the first direct observation of the electric field tunable energy gap in electronic transport experiments on doubly gated suspended ABC-trilayer graphene. From a systematic study of the non-linearities in current textit{versus} voltage characteristics and the temperature dependence of the conductivity we demonstrate that thermally activated transport over the energy-gap dominates the electrical response of these transistors. The estimated values for energy gap from the temperature dependence and from the current voltage characteristics follow the theoretically expected electric field dependence with critical exponent $3/2$. These experiments indicate that high quality few-layer graphene are suitable candidates for exploring novel tunable THz light sources and detectors.
We present a theory of phonon-mediated superconductivity in near magic angle twisted bilayer graphene. Using a microscopic model for phonon coupling to moire band electrons, we find that phonons generate attractive interactions in both $s$ and $d$ wave pairing channels and that the attraction is strong enough to explain the experimental superconducting transition temperatures. Before including Coulomb repulsion, the $s$-wave channel is more favorable; however, on-site Coulomb repulsion can suppress $s$-wave pairing relative to $d$-wave. The pair amplitude varies spatially with the moire period, and is identical in the two layers in the $s$-wave channel but phase shifted by $pi$ in the $d$-wave channel. We discuss experiments that can distinguish the two pairing states.
We show that introducing spin-singlet or spin-triplet superconductivity into twisted bilayer graphene induces higher-order topological superconductivity. $C_{2z}T$-protected corner states of Majorana Kramers pairs appear at the boundary between domains with opposite signs of pairing, and zero modes materialize in Abrikosov vortices. The topology of the superconducting phase originates from the anomaly [1] -- the absence of a lattice support -- of the single-valley band structure of twisted bilayer graphene, which is protected by $C_{2z}T$ and the particle-hole symmetry $cal P$. We prove that any pairing (spin-singlet or spin-triplet) term preserving valley-U(1), spin-SU(2), time-reversal, $C_{2z}T$, and $cal P$ must drive the system into a higher-order topological superconductor phase. Here spin-SU(2) is the global spin-SU(2) for the singlet pairing and a combination of two SU(2)s in the two valleys for the triplet pairing. Using a Dirac Hamiltonian, we demonstrate the existence of corner modes and confirm this with numerical calculations. These corner states are stable even if the approximate particle-hole symmetry $cal P$ is weakly broken, which is true in experimental setups. Finally, we suggest an experiment to detect the topological superconductivity: by observing the fractional Josephson effect in a TBG-TSC Josephson system.
Recently, an extremely high superconducting temperature (Tc) of ~200 K has been reported in the sulfur hydride system above 100 GPa. This result is supported by theoretical predictions and verified experimentally. The crystal structure of the superconducting phase was also identified experimentally, confirming the theoretically predicted structure as well as a decomposition mechanism from H2S to H3S+S. Even though nuclear resonant scattering has been successfully used to provide magnetic evidence for a superconducting state, a direct measurement of the important Meissner effect is still lacking. Here we report in situ alternating-current magnetic susceptibility measurements on compressed H2S under high pressures. It is shown that superconductivity suddenly appears at 117 GPa and that Tc reaches 183 K at 149 GPa before decreasing monotonically with a further increase in pressure. This evolution agrees with both theoretical calculations and earlier experimental measurements. The idea of conventional high temperature superconductivity in hydrogen-dominant compounds has thus been realized in the sulfur hydride system under hydrostatic pressure, opening further exciting perspectives for possibly realizing room temperature superconductivity in hydrogen-based compounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا