Do you want to publish a course? Click here

Neutral hydrogen structures trace dust polarization angle: Implications for cosmic microwave background foregrounds

97   0   0.0 ( 0 )
 Added by Susan Clark
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using high-resolution data from the Galactic Arecibo L-Band Feed Array HI (GALFA-HI) survey, we show that linear structure in Galactic neutral hydrogen (HI) correlates with the magnetic field orientation implied by Planck 353 GHz polarized dust emission. The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. At high Galactic latitudes, where the Planck data are noise-dominated, the HI data provide an independent constraint on the Galactic magnetic field orientation, and hence the local dust polarization angle. We detect strong cross-correlations between template maps constructed from estimates of dust intensity combined with either HI-derived angles, starlight polarization angles, or Planck 353 GHz angles. The HI data thus provide a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination.



rate research

Read More

Isotropy-violation statistics can highlight polarized galactic foregrounds that contaminate primordial $B$-modes in the Cosmic Microwave Background (CMB). We propose a particular isotropy-violation test and apply it to polarized Planck 353 GHz data, constructing an map that indicates $B$-mode foreground dust power over the sky. We build our main isotropy test in harmonic space via the bipolar spherical harmonic basis, and our method helps us to identify the least-contaminated directions. By this measure, there are regions of low foreground in and around the BICEP field, near the South Galactic Pole, and in the Northern Galactic Hemisphere. There is also a possible foreground feature in the BICEP field. We compare our results to those based on the local power spectrum, which is computed on discs using a version of the method of Planck Int.~XXX (2016). The discs method is closely related to our isotropy-violation diagnostic. We pay special care to the treatment of noise, including chance correlations with the foregrounds. Currently we use our isotropy tool to assess the cleanest portions of the sky, but in the future such methods will allow isotropy-based null tests for foreground contamination in maps purported to measure primordial $B$-modes, particularly in cases of limited frequency coverage.
Polarized Galactic foregrounds are one of the primary sources of systematic error in measurements of the B-mode polarization of the Cosmic Microwave Background (CMB). Experiments are becoming increasingly sensitive to complexities in the foreground frequency spectra that are not captured by standard parametric models, potentially affecting our ability to efficiently separate out these components. Employing a suite of dust models encompassing a variety of physical effects, we simulate observations of a future seven-band CMB experiment to assess the impact of these complexities on parametric component separation. We identify configurations of frequency bands that minimize the `model errors caused by fitting simple parametric models to more complex `true foreground spectra, which bias the inferred CMB signal. We find that: (a) fits employing a simple two parameter modified blackbody (MBB) dust model tend to produce significant bias in the recovered polarized CMB signal in the presence of physically realistic dust foregrounds; (b) generalized MBB models with three additional parameters reduce this bias in most cases, but non-negligible biases can remain, and can be hard to detect; and (c) line of sight effects, which give rise to frequency decorrelation, and the presence of iron grains are the most problematic complexities in the dust emission for recovering the true CMB signal. More sophisticated simulations will be needed to demonstrate that future CMB experiments can successfully mitigate these more physically realistic dust foregrounds.
We compute the spectral distortions of the Cosmic Microwave Background (CMB) polarization induced by non-linear effects in the Compton interactions between CMB photons and cold intergalactic electrons. This signal is of the $y$-type and is dominated by contributions arising from the reionized era. We stress that it is not shadowed by the thermal SZ effect which has no equivalent for polarization. We decompose its angular dependence into $E$- and $B$-modes, and we calculate the corresponding power spectra, both exactly and using a suitable Limber approximation that allows a simpler numerical evaluation. We find that $B$-modes are of the same order of magnitude as $E$-modes. Both spectra are relatively flat, peaking around $ell=280$, and their overall amplitude is directly related to the optical depth to reionization. Moreover, we find this effect to be one order of magnitude larger than the non-linear kinetic Sunyaev-Zeldovich effect in galaxy clusters. Finally, we discuss how to improve the detectability of our signal by cross-correlating it with other quantities sourced by the flow of intergalactic electrons.
126 - E. Carretti 2010
The CMB polarization promises to unveil the dawn of time measuring the gravitational wave background emitted by the Inflation. The CMB signal is faint, however, and easily contaminated by the Galactic foreground emission, accurate measurements of which are thus crucial to make CMB observations successful. We review the CMB polarization properties and the current knowledge on the Galactic synchrotron emission, which dominates the foregrounds budget at low frequency. We then focus on the S-Band Polarization All Sky Survey (S-PASS), a recently completed survey of the entire southern sky designed to investigate the Galactic CMB foreground.
We apply our symmetry based Power tensor technique to test conformity of PLANCK Polarization maps with statistical isotropy. On a wide range of angular scales (l=40-150), our preliminary analysis detects many statistically anisotropic multipoles in foreground cleaned full sky PLANCK polarization maps viz., COMMANDER and NILC. We also study the effect of residual foregrounds that may still be present in the galactic plane using both common UPB77 polarization mask, as well as the individual component separation method specific polarization masks. However some of the statistically anisotropic modes still persist, albeit significantly in NILC map. We further probed the data for any coherent alignments across multipoles in several bins from the chosen multipole range.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا