Do you want to publish a course? Click here

Polaritons are Not Weakly Interacting: Direct Measurement of the Polariton-Polariton Interaction Strength

209   0   0.0 ( 0 )
 Added by Yongbao Sun
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exciton-polaritons in a microcavity are composite two-dimensional bosonic quasiparticles, arising from the strong coupling between confined light modes in a resonant planar optical cavity and excitonic transitions, typically using excitons in semiconductor quantum wells (QWs) placed at the antinodes of the same cavity. Quantum phenomena such as Bose-Einstein condensation (BEC), quantized vortices, and macroscopic quantum states have been reported at temperatures from tens of Kelvin up to room temperatures, and polaritonic devices such as spin switches cite{Amo2010} and optical transistors have also been reported. Many of these effects of exciton-polaritons depend crucially on the polariton-polariton interaction strength. Despite the importance of this parameter, it has been difficult to make an accurate experimental measurement, mostly because of the difficulty of determining the absolute densities of polaritons and bare excitons. Here we report the direct measurement of the polariton-polariton interaction strength in a very high-Q microcavity structure. By allowing polaritons to propagate over 40 $mu$m to the center of a laser-generated annular trap, we are able to separate the polariton-polariton interactions from polariton-exciton interactions. The interaction strength is deduced from the energy renormalization of the polariton dispersion as the polariton density is increased, using the polariton condensation as a benchmark for the density. We find that the interaction strength is about two orders of magnitude larger than previous theoretical estimates, putting polaritons squarely into the strongly-interacting regime. When there is a condensate, we see a sharp transition to a different dependence of the renormalization on the density, which is evidence of many-body effects.

rate research

Read More

Bosonic condensates of exciton polaritons (light-matter quasiparticles in a semiconductor) provide a solid-state platform for studies of non-equilibrium quantum systems with a spontaneous macroscopic coherence. These driven, dissipative condensates typically coexist and interact with an incoherent reservoir, which undermines measurements of key parameters of the condensate. Here, we overcome this limitation by creating a high-density exciton-polariton condensate in an optically-induced box trap. In this so-called Thomas-Fermi regime, the condensate is fully separated from the reservoir and its behaviour is dominated by interparticle interactions. We use this regime to directly measure the polariton-polariton interaction strength, and reduce the existing uncertainty in its value from four orders of magnitude to within three times the theoretical prediction. The Thomas-Fermi regime has previously been demonstrated only in ultracold atomic gases in thermal equilibrium. In a non-equilibrium exciton-polariton system, this regime offers a novel opportunity to study interaction-driven effects unmasked by an incoherent reservoir.
We predict the spontaneous modulated emission from a pair of exciton-polariton condensates due to coherent (Josephson) and dissipative coupling. We show that strong polariton-polariton inter- action generates complex dynamics in the weak-lasing domain way beyond Hopf bifurcations. As a result, the exciton-polariton condensates exhibit self-induced oscillations and emit an equidistant frequency comb light spectrum. A plethora of possible emission spectra with asymmetric peak dis- tributions appears due to spontaneously broken time-reversal symmetry. The lasing dynamics is affected by the shot noise arising from the influx of polaritons. That results in a complex inhomo- geneous line broadening.
We develop a theory for light propagating in an atomic Bose-Einstein condensate in the presence of strong interactions. The resulting many-body correlations are shown to have profound effects on the optical properties of this interacting medium. For weak atom-light coupling, there is a well-defined quasiparticle, the polaron-polariton, supporting light propagation with spectral features differing significantly from the noninteracting case. The damping of the polaron-polariton depends nonmonotonically on the light-matter coupling strength, initially increasing and then decreasing. This gives rise to an interesting crossover between two quasiparticles: a bare polariton and a polaron-polariton, separated by a complex and lossy mixture of light and matter.
The Higgs amplitude mode is a collective excitation studied and observed in a broad class of matter, including superconductors, charge density waves, antiferromagnets, 3He p-wave superfluid, and ultracold atomic condensates. In all the observations reported thus far, the amplitude mode was excited by perturbing the condensate out of equilibrium. Studying an exciton-polariton condensate, here we report the first observation of this mode purely driven by intrinsic quantum fluctuations without such perturbations. By using an ultrahigh quality microcavity and a Raman spectrometer to maximally reject photoluminescence from the condensate, we observe weak but distinct photoluminescence at energies below the condensate emission. We identify this as the so-called ghost branches of the amplitude mode arising from quantum depletion of the condensate into this mode. These energies, as well as the overall structure of the photoluminescence spectra, are in good agreement with our theoretical analysis.
We study exciton-polariton nonlinear optical fluids in a high momentum regime for the first time. Defects in the fluid develop into dark solitons whose healing length decreases with increasing density. We deduce interaction constants for continuous wave polaritons an order of magnitude larger than with picosecond pulses. Time dependent measurements show a 100ps time for the buildup of the interaction strength suggesting a self-generated excitonic reservoir as the source of the extra nonlinearity. The experimental results agree well with a model of coupled photons, excitons and the reservoir.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا