There are very few direct experimental tests of the inverse square law of gravity at distances comparable to the scale of the Solar System and beyond. Here we describe a possible space mission optimized to test the inverse square law at a scale of up to 100 AU. For example, sensitivity to a Yukawa correction with a strength of $10^{-7}$ times gravity and length scale of 100 AU is within reach, improving the current state of the art by over two orders of magnitude. This experiment would extend our understanding of gravity to the largest scale that can be reached with a direct probe using known technology. This would provide a powerful test of long-distance modifications of gravity including many theories motivated by dark matter or dark energy.
The direct detection of gravitational waves now provides a new channel of testing gravity theories. Despite that the parametrized post-Einsteinian framework is a powerful tool to quantitatively investigate effects of modification of gravity theory, the gravitational waveform in this framework is still extendable. One of such extensions is to take into account the gradual activation of dipole radiation due to massive fields, which are still only very weakly constrained if their mass $m$ is greater than $10^{-16}$ eV from pulsar observations. Ground-based gravitational-wave detectors, LIGO, Virgo, and KAGRA, are sensitive to this activation in the mass range, $10^{-14}$ eV $lesssim m lesssim 10^{-13}$ eV. Hence, we discuss a dedicated test for dipole radiation due to a massive field using the LIGO-Virgo collaborations open data. In addition, assuming Einstein-dilaton-Gauss-Bonnet (EdGB) type coupling, we combine the results of the analysis of the binary black hole events to obtain the 90% confidence level constraints on the coupling parameter $alpha_{rm EdGB}$ as $sqrt{alpha_{rm EdGB}} lesssim 2.47$ km for any mass less than $6 times 10^{-14}$ eV for the first time, including $sqrt{alpha_{rm EdGB}} lesssim 1.85$ km in the massless limit.
Galactic rotation curves are often considered the first robust evidence for the existence of dark matter. However, even in the presence of a dark matter halo, other galactic-scale observations, such as the Baryonic Tully-Fisher Relation and the Radial Acceleration Relation, remain challenging to explain. This has motivated long-distance, infrared modifications to gravity as an alternative to the dark matter hypothesis as well as various DM theories with similar phenomenology. In general, the standard lore has been that any model that reduces to the phenomenology of MOdified Newtonian Dynamics (MOND) on galactic scales explains essentially all galaxy-scale observables. We present a framework to test precisely this statement using local Milky Way observables, including the vertical acceleration field, the rotation curve, the baryonic surface density, and the stellar disk profile. We focus on models that predict scalar amplifications of gravity, i.e., models that increase the magnitude but do not change the direction of the gravitational acceleration. We find that models of this type are disfavored relative to a simple dark matter halo model because the Milky Way data requires a substantial amplification of the radial acceleration with little amplification of the vertical acceleration. We conclude that models which result in a MOND-like force struggle to simultaneously explain both the rotational velocity and vertical motion of nearby stars in the Milky Way.
Dimensional flow, the scale dependence of the dimensionality of spacetime, is a feature shared by many theories of quantum gravity (QG). We present the first study of the consequences of QG dimensional flow for the luminosity distance scaling of gravitational waves in the frequency ranges of LIGO and LISA. We find generic modifications with respect to the standard general-relativistic scaling, largely independent of specific QG proposals. We constrain these effects using two examples of multimessenger standard sirens, the binary neutron-star merger GW170817 and a simulated supermassive black-hole merger event detectable with LISA. We apply these constraints to various QG candidates, finding that the quantum geometries of group field theory, spin foams and loop quantum gravity can give rise to observable signals in the gravitational-wave spin-2 sector. Our results complement and improve GW propagation-speed bounds on modified dispersion relations. Under more model-dependent assumptions, we also show that bounds on quantum geometry can be strengthened by solar-system tests.
The emergent area of gravitational wave astronomy promises to provide revolutionary discoveries in the areas of astrophysics, cosmology, and fundamental physics. One of the most exciting possibilities is to use gravitational-wave observations to test alternative theories of gravity. In this contribution we describe how to use observations of extreme-mass-ratio inspirals by the future Laser Interferometer Space Antenna to test a particular class of theories: Chern-Simons modified gravity.
We study the impact of the limit on $|dot{G}|/G$ from Lunar Laser Ranging on nonlocal gravity, i.e. on models of the quantum effective action of gravity that include nonlocal terms relevant in the infrared, such as the RR and RT models proposed by our group, and the Deser-Woodard (DW) model. We elaborate on the analysis of Barreira et al. [1] and we confirm their findings that (under plausible assumptions such as the absence of strong backreaction from non-linear structures), the RR model is ruled out. We also show that the mechanism of perfect screening for free suggested for the DW model actually does not work and the DW model is also ruled out. In contrast, the RT model passes all phenomenological consistency tests and is still a viable candidate.