No Arabic abstract
SNO+ is a large liquid scintillator-based experiment located 2km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0$ ubetabeta$) of 130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low-energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0$ ubetabeta$ Phase I is foreseen for 2017.
The JSNS$^2$ experiment aims to search for the existence of neutrino oscillations with $Delta {rm m}^2$ near 1 eV$^2$ at the J-PARC Materials and Life Science Experimental Facility (MLF). A 3~GeV 1~MW proton beam incident on a mercury target produces an intense neutrino source from muon decay at rest ($mu^{+} rightarrow e^{+} + bar{ u}_{mu} + u_{e}$). The oscillation to be searched for is $bar{ u}_{mu}$ to $bar{ u}_{e}$, detected via the inverse beta decay~(IBD) reaction ($bar{ u}_{e} + p rightarrow e^{+} + n$), which is then distinctively tagged by gammas from neutron capture of Gadolinium. The first of two detectors with 17 tons fiducial volume is currently under construction at a distance of 24 m from the mercury target. JSNS$^2$ is expected to provide the ultimate test of the LSND anomaly by replicating nearly identical conditions. The status of the experiment, which is expected to start taking data in Spring 2019, is discussed and its physics potential reviewed.
DM-Ice is a program towards the first direct detection search for dark matter in the Southern Hemisphere with a 250 kg-scale NaI(Tl) crystal array. It will provide a definitive understanding of the modulation signal reported by DAMA by running an array at both Northern and Southern Hemisphere sites. A 17 kg predecessor, DM-Ice17, was deployed in December 2010 at a depth of 2457 m under the ice at the geographic South Pole and has concluded its 3.5 yr data run. An active R&D program is underway to investigate detectors with lower backgrounds and improved readout electronics; two crystals with 37 kg combined mass are currently operating at the Boulby Underground Laboratory. We report on the final analyses of the DM-Ice17 data and describe progress towards a 250 kg DM-Ice experiment.
The SNO+ experiment is located 2 km underground at SNOLAB in Sudbury, Canada. A low background search for neutrinoless double beta ($0 ubetabeta$) decay will be conducted using 780 tonnes of liquid scintillator loaded with 3.9 tonnes of natural tellurium, corresponding to 1.3 tonnes of $^{130}$Te. This paper provides a general overview of the SNO+ experiment, including detector design, construction of process plants, commissioning efforts, electronics upgrades, data acquisition systems, and calibration techniques. The SNO+ collaboration is reusing the acrylic vessel, PMT array, and electronics of the SNO detector, having made a number of experimental upgrades and essential adaptations for use with the liquid scintillator. With low backgrounds and a low energy threshold, the SNO+ collaboration will also pursue a rich physics program beyond the search for $0 ubetabeta$ decay, including studies of geo- and reactor antineutrinos, supernova and solar neutrinos, and exotic physics such as the search for invisible nucleon decay. The SNO+ approach to the search for $0 ubetabeta$ decay is scalable: a future phase with high $^{130}$Te-loading is envisioned to probe an effective Majorana mass in the inverted mass ordering region.
We propose a new experiment to search for a sterile neutrino in a few keV mass range at the Troitsk nu-mass facility. The expected signature corresponds to a kink in the electron energy spectrum in tritium beta-decay. The new goal compared to our previous experiment will be precision spectrum measurements well below end point. The experimental installation consists of a windowless gaseous tritium source and a high resolution electromagnetic spectrometer. We estimate that the current bounds on the sterile neutrino mixing parameter can be improved by an order of magnitude in the mass range under 5 keV without major upgrade of the existing equipment. Upgrades of calibration, data acquisition and high voltage systems will allow to improve the bounds by another order of magnitude.
The determination of the neutrino mass hierarchy, whether the $ u _3$ neutrino mass eigenstate is heavier or lighter than the $ u _1$ and $ u _2$ mass eigenstates, is one of the remaining undetermined fundamental aspects of the Standard Model in the lepton sector. Furthermore the mass hierarchy determination will have an impact in the quest of the neutrino nature (Dirac or Majorana mass terms) towards the formulation of a theory of flavour. The Jiangmen Underground Neutrino Observatory (JUNO) is a reactor neutrino experiment under construction at Kaiping, Jiangmen in Southern China composed by a large liquid scintillator detector (sphere of 35.4 m of diameter) surronding by 18000 large PMTs and 25000 small PMTs, a water cherenkov detector and a top tracker detector. The large active mass (20 kton) and the unprecedented energy resolution (3% at 1 MeV) will allow to determine the neutrino mass hierarchy with good sensitivity and to precisely measure the neutrino mixing parameters, $theta _{12}$, $Delta m^2_{21} $, and $Delta m^2_{ee}$ below the 1% level. Moreover, a large liquid scintillator detector will allow to explore physics beyond mass hierarchy determination, in particular on many oyher topics such as in astroparticle physics, like supernova burst and diffuse supernova neutrinos, solar neutrinos, atmospheric neutrinos, geo-neutrinos, nucleon decay, indirect dark matter searches and a number of additional exotic searches. In this work the status and the perspectives of the JUNO experiment will be described, focusing also on the main physics aims and the other possible physics cases.