Do you want to publish a course? Click here

Production and Characterization of 228Th Calibration Sources with Low Neutron Emission for GERDA

75   0   0.0 ( 0 )
 Added by Giovanni Benato
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The GERDA experiment at the Laboratori Nazionali del Gran Sasso (LNGS) searches for the neutrinoless double beta decay of 76-Ge. In view of the GERDA Phase II data collection, four new 228-Th radioactive sources for the calibration of the germanium detectors enriched in 76-Ge have been produced with a new technique, leading to a reduced neutron flux from ( alpha; n ) reactions. The gamma activities of the sources were determined with a total uncertainty of 4 percent using an ultra-low background HPGe detector operated underground at LNGS. The emitted neutron flux was determined using a low background LiI(Eu) detector and a 3-He counter at LNGS. In both cases, a reduction of about one order of magnitude with respect to commercially available 228-Th sources was obtained. Additionally, a specific leak test with a sensitivity to leaks down to 10 mBq was developed to investigate the tightness of the stainless steel capsules housing the sources after their use in cryogenic environment.



rate research

Read More

A custom-made 228Th source of several MBq activity was produced for the Borexino experiment for studying the external background of the detector. The aim was to reduce the unwanted neutron emission produced via (alpha,n) reactions in ceramics used typically for commercial 228Th sources. For this purpose a ThCl4 solution was converted chemically into ThO2 and embedded into a gold foil. The paper describes the production and the characterization of the custom-made source by means of gamma-activity, dose rate and neutron source strength measurements. From gamma-spectroscopic measurements it was deduced that the activity transfer from the initial solution to the final source was >91% (at 68% C.L.) and the final activity was (5.41+-0.30) MBq. The dose rate was measured by two dosimeters yielding 12.1 mSv/h and 14.3 mSv/h in 1 cm distance. The neutron source strength of the 5.41 MBq 228Th source was determined as (6.59+-0.85)/sec.
The GERmanium Detector Array (GERDA) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0{ u}{beta}{beta}) of $^{76}$Ge. Germanium detectors made of material with an enriched $^{76}$Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of the experiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new $^{76}$Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in GERDA during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the $^{76}$Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of GERDA Phase~II.
The GERmanium Detector Array (GERDA) collaboration searched for neutrinoless double-$beta$ decay in $^{76}$Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at Q$_{betabeta}$ = 2039.061(7)keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double-$beta$ decays allowed by the Standard Model. The energy resolution and stability were determined and monitored as a function of time using data from regular $^{228}$Th calibrations. In this work, we describe the calibration process and associated data analysis of the full GERDA dataset, tailored to preserve the excellent resolution of the individual germanium detectors when combining data over several years.
Novel ultra-compact, electrically switchable, time-structured/pulsed, ~1-14 MeV-level neutron and photon generators have application embedded into large detector systems, especially calorimeters, for energy and operational calibration. The small sizes are applicable to permanent in-situ deployment, or able to be conveniently inserted into large high energy physics detector systems. For bench- testing of prototypes, or for detector module production testing, these compact n and gamma generators offer advantages.
The GERmanium Detector Array, GERDA, searches for neutrinoless double beta decay in Ge-76 using bare high-purity germanium detectors submerged in liquid argon. For the calibration of these detectors gamma emitting sources have to be lowered from their parking position on top of the cryostat over more than five meters down to the germanium crystals. With the help of Monte Carlo simulations, the relevant parameters of the calibration system were determined. It was found that three Th-228 sources with an activity of 20 kBq each at two different vertical positions will be necessary to reach sufficient statistics in all detectors in less than four hours of calibration time. These sources will contribute to the background of the experiment with a total of (1.07 +/- 0.04(stat) +0.13 -0.19(sys)) 10^{-4} cts/(keV kg yr) when shielded from below with 6 cm of tantalum in the parking position.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا