No Arabic abstract
Let $SL_2$ be the rank one simple algebraic group defined over an algebraically closed field $k$ of characteristic $p>0$. The paper presents a new method for computing the dimension of the cohomology spaces $text{H}^n(SL_2,V(m))$ for Weyl $SL_2$-modules $V(m)$. We provide a closed formula for $text{dim}text{H}^n(SL_2,V(m))$ when $nle 2p-3$ and show that this dimension is bounded by the $(n+1)$-th Fibonacci number. This formula is then used to compute $text{dim}text{H}^n(SL_2, V(m))$ for $n=1, 2,$ or $3$. For $n>2p-3$, an exponential bound, only depending on $n$, is obtained for $text{dim}text{H}^n(SL_2,V(m))$. Analogous results are also established for the extension spaces $text{Ext}^n_{SL_2}(V(m_2),V(m_1))$ between Weyl modules $V(m_1)$ and $V(m_2)$. In particular, we determine the degree three extensions for all Weyl modules of $SL_2$. As a byproduct, our results and techniques give explicit upper bounds for the dimensions of the cohomology of the Specht modules of symmetric groups, the cohomology of simple modules of $SL_2$, and the finite group of Lie type $SL_2(p^s)$.
We investigate various ways to define an analogue of BGG category $mathcal{O}$ for the non-semi-simple Takiff extension of the Lie algebra $mathfrak{sl}_2$. We describe Gabriel quivers for blocks of these analogues of category $mathcal{O}$ and prove extension fullness of one of them in the category of all modules.
It is proved that the continuous bounded cohomology of SL_2(k) vanishes in all positive degrees whenever k is a non-Archimedean local field. This holds more generally for boundary-transitive groups of tree automorphisms and implies low degree vanishing for SL_2 over S-integers.
We consider the group $SL_2(K)$, where $K$ is a local non-archimedean field of characteristic two. We prove that the depth of any irreducible representation of $SL_2 (K)$ is larger than the depth of the corresponding Langlands parameter, with equality if and only if the L-parameter is essentially tame. We also work out a classification of all $L$-packets for $SL_2 (K)$ and for its non-split inner form, and we provide explicit formulae for the depths of their $L$-parameters.
We define and calculate the fusion algebra of WZW model at a rational level by cohomological methods. As a byproduct we obtain a cohomological characterization of admissible representations of $widehat{gtsl}_{2}$.
We give a complete study of the Clifford-Weyl algebra ${mathcal C}(n,2k)$ from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that ${mathcal C}(n,2k)$ is rigid when $n$ is even or when $k eq 1$. We find all non-trivial deformations of ${mathcal C}(2n+1,2)$ and study their representations.