Do you want to publish a course? Click here

Machine Learning Energies of 2 M Elpasolite (ABC$_2$D$_6$) Crystals

60   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Elpasolite is the predominant quaternary crystal structure (AlNaK$_2$F$_6$ prototype) reported in the Inorganic Crystal Structure Database. We have developed a machine learning model to calculate density functional theory quality formation energies of all $sim$2 M pristine ABC$_2$D$_6$ elpasolite crystals which can be made up from main-group elements (up to bismuth). Our models accuracy can be improved systematically, reaching 0.1 eV/atom for a training set consisting of 10 k crystals. Important bonding trends are revealed, fluoride is best suited to fit the coordination of the D site which lowers the formation energy whereas the opposite is found for carbon. The bonding contribution of elements A and B is very small on average. Low formation energies result from A and B being late elements from group (II), C being a late (I) element, and D being fluoride. Out of 2 M crystals, 90 unique structures are predicted to be on the convex hull---among which NFAl$_2$Ca$_6$, with peculiar stoichiometry and a negative atomic oxidation state for Al.



rate research

Read More

Using a combination of Density Functional Theory, mean-field analysis and exact diagonalization calculations we reveal the emergence of a dimerized charge ordered state in TMTTF$_2$-PF$_6$ organic crystal. The interplay between charge and spin order leads to a rich phase diagram. Coexistence of charge ordering with a structural dimerization results in a ferroelectric phase, which has been observed experimentally. The tendency to the dimerization is magnetically driven revealing TMTTF$_2$-PF$_6$ as a multiferroic material.
Predicting the outcome of a chemical reaction using efficient computational models can be used to develop high-throughput screening techniques. This can significantly reduce the number of experiments needed to be performed in a huge search space, which saves time, effort and expense. Recently, machine learning methods have been bolstering conventional structure-activity relationships used to advance understanding of chemical reactions. We have developed a model to predict the products of catalytic reactions on the surface of oxygen-covered and bare gold using machine learning. Using experimental data, we developed a machine learning model that maps reactants to products, using a chemical space representation. This involves predicting a chemical space value for the products, and then matching this value to a molecular structure chosen from a database. The database was developed by applying a set of possible reaction outcomes using known reaction mechanisms. Our machine learning approach complements chemical intuition in predicting the outcome of several types of chemical reactions. In some cases, machine learning makes correct predictions where chemical intuition fails. We achieve up to 93% prediction accuracy for a small data set of less than two hundred reactions.
Machine learning is a powerful tool to design accurate, highly non-local, exchange-correlation functionals for density functional theory. So far, most of those machine learned functionals are trained for systems with an integer number of particles. As such, they are unable to reproduce some crucial and fundamental aspects, such as the explicit dependency of the functionals on the particle number or the infamous derivative discontinuity at integer particle numbers. Here we propose a solution to these problems by training a neural network as the universal functional of density-functional theory that (i) depends explicitly on the number of particles with a piece-wise linearity between the integer numbers and (ii) reproduces the derivative discontinuity of the exchange-correlation energy. This is achieved by using an ensemble formalism, a training set containing fractional densities, and an explicitly discontinuous formulation.
Machine learning is used to approximate the kinetic energy of one dimensional diatomics as a functional of the electron density. The functional can accurately dissociate a diatomic, and can be systematically improved with training. Highly accurate self-consistent densities and molecular forces are found, indicating the possibility for ab-initio molecular dynamics simulations.
We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an Ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix by using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a data set of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37 eV/atom for the respective representations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا