Do you want to publish a course? Click here

Strong Coresets for Hard and Soft Bregman Clustering with Applications to Exponential Family Mixtures

54   0   0.0 ( 0 )
 Added by Mario Lucic
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Coresets are efficient representations of data sets such that models trained on the coreset are provably competitive with models trained on the original data set. As such, they have been successfully used to scale up clustering models such as K-Means and Gaussian mixture models to massive data sets. However, until now, the algorithms and the corresponding theory were usually specific to each clustering problem. We propose a single, practical algorithm to construct strong coresets for a large class of hard and soft clustering problems based on Bregman divergences. This class includes hard clustering with popular distortion measures such as the Squared Euclidean distance, the Mahalanobis distance, KL-divergence and Itakura-Saito distance. The corresponding soft clustering problems are directly related to popular mixture models due to a dual relationship between Bregman divergences and Exponential family distributions. Our theoretical results further imply a randomized polynomial-time approximation scheme for hard clustering. We demonstrate the practicality of the proposed algorithm in an empirical evaluation.



rate research

Read More

The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtures (DPPM) which represent a Bayesian nonparametric formulation of these parsimonious Gaussian mixture models. The proposed DPPM models are Bayesian nonparametric parsimonious mixture models that allow to simultaneously infer the model parameters, the optimal number of mixture components and the optimal parsimonious mixture structure from the data. We develop a Gibbs sampling technique for maximum a posteriori (MAP) estimation of the developed DPMM models and provide a Bayesian model selection framework by using Bayes factors. We apply them to cluster simulated data and real data sets, and compare them to the standard parsimonious mixture models. The obtained results highlight the effectiveness of the proposed nonparametric parsimonious mixture models as a good nonparametric alternative for the parametric parsimonious models.
This paper considers a canonical clustering problem where one receives unlabeled samples drawn from a balanced mixture of two elliptical distributions and aims for a classifier to estimate the labels. Many popular methods including PCA and k-means require individual components of the mixture to be somewhat spherical, and perform poorly when they are stretched. To overcome this issue, we propose a non-convex program seeking for an affine transform to turn the data into a one-dimensional point cloud concentrating around -1 and 1, after which clustering becomes easy. Our theoretical contributions are two-fold: (1) we show that the non-convex loss function exhibits desirable landscape properties as long as the sample size exceeds some constant multiple of the dimension, and (2) we leverage this to prove that an efficient first-order algorithm achieves near-optimal statistical precision even without good initialization. We also propose a general methodology for multi-class clustering tasks with flexible choices of feature transforms and loss objectives.
In our recent paper, we showed that in exponential family, contrastive divergence (CD) with fixed learning rate will give asymptotically consistent estimates cite{wu2016convergence}. In this paper, we establish consistency and convergence rate of CD with annealed learning rate $eta_t$. Specifically, suppose CD-$m$ generates the sequence of parameters ${theta_t}_{t ge 0}$ using an i.i.d. data sample $mathbf{X}_1^n sim p_{theta^*}$ of size $n$, then $delta_n(mathbf{X}_1^n) = limsup_{t to infty} Vert sum_{s=t_0}^t eta_s theta_s / sum_{s=t_0}^t eta_s - theta^* Vert$ converges in probability to 0 at a rate of $1/sqrt[3]{n}$. The number ($m$) of MCMC transitions in CD only affects the coefficient factor of convergence rate. Our proof is not a simple extension of the one in cite{wu2016convergence}. which depends critically on the fact that ${theta_t}_{t ge 0}$ is a homogeneous Markov chain conditional on the observed sample $mathbf{X}_1^n$. Under annealed learning rate, the homogeneous Markov property is not available and we have to develop an alternative approach based on super-martingales. Experiment results of CD on a fully-visible $2times 2$ Boltzmann Machine are provided to demonstrate our theoretical results.
In the past few years powerful generalizations to the Euclidean k-means problem have been made, such as Bregman clustering [7], co-clustering (i.e., simultaneous clustering of rows and columns of an input matrix) [9,18], and tensor clustering [8,34]. Like k-means, these more general problems also suffer from the NP-hardness of the associated optimization. Researchers have developed approximation algorithms of varying degrees of sophistication for k-means, k-medians, and more recently also for Bregman clustering [2]. However, there seem to be no approximation algorithms for Bregman co- and tensor clustering. In this paper we derive the first (to our knowledge) guaranteed methods for these increasingly important clustering settings. Going beyond Bregman divergences, we also prove an approximation factor for tensor clustering with arbitrary separable metrics. Through extensive experiments we evaluate the characteristics of our method, and show that it also has practical impact.
Fitting a graphical model to a collection of random variables given sample observations is a challenging task if the observed variables are influenced by latent variables, which can induce significant confounding statistical dependencies among the observed variables. We present a new convex relaxation framework based on regularized conditional likelihood for latent-variable graphical modeling in which the conditional distribution of the observed variables conditioned on the latent variables is given by an exponential family graphical model. In comparison to previously proposed tractable methods that proceed by characterizing the marginal distribution of the observed variables, our approach is applicable in a broader range of settings as it does not require knowledge about the specific form of distribution of the latent variables and it can be specialized to yield tractable approaches to problems in which the observed data are not well-modeled as Gaussian. We demonstrate the utility and flexibility of our framework via a series of numerical experiments on synthetic as well as real data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا