No Arabic abstract
Finding efficient descriptions of how an environment affects a collection of discrete quantum systems would lead to new insights into many areas of modern physics. Markovian, or time-local, methods work well for individual systems, but for groups a question arises: does system-bath or inter-system coupling dominate the dissipative dynamics? The answer has profound consequences for the long-time quantum correlations within the system. We consider two bosonic modes coupled to a bath. By comparing an exact solution to different Markovian master equations, we find that a smooth crossover of the equations-of-motion between dominant inter-system and system-bath coupling exists -- but requires a non-secular master equation. We predict a singular behaviour of the dynamics, and show that the ultimate failure of non-secular equations of motion is essentially a failure of the Markov approximation. Our findings justify the use of time-local theories throughout the crossover between system-bath dominated and inter-system-coupling dominated dynamics.
We demonstrate theoretically the noise-stimulated enhancement of quantum coherence in a superconducting flux qubit. First, an external classical noise can increase the off-diagonal components of the qubit density matrix. Second, in the presence of noise, the Rabi oscillations survive for times significantly longer than the Rabi decay time in a noiseless system. These Rabi oscillations appear as a modulation of the forced response of the qubit to the ac driving field. These effects can be considered as a manifestation of quantum stochastic resonance and are relevant to experimental techniques, such as Rabi spectroscopy.
Velleytronics as a new electronic conception is an emerging exciting research field with wide potential applications, which is attracting great research interests for their extraordinary properties. The localized electronic spins by optical generation of valley polarization with spin-like quantum numbers are promising candidates for implementing quantum-information processing in solids. It is expected that a single qubit preparation can be realized optically by using combination of left- and right-circularly polarized lights. Significantly in a series of experiments, this has already been well achieved by linearly polarized laser representing equal weights of left- and right-circular components resulting in formation of a valley exciton as a specific pseudo-spin qubit with equal amplitudes for spin up and spin down. Further researches on the control of valley pseudospin using longitudinal magnetic field and optical Stark effect have been reported. However, a general qubit preparation has not yet been demonstrated. Moreover as a platform for quantum information processing, the precise readout of a qubit state is necessary, for which the state tomography is a standard method in obtaining all information of a qubit state density matrix.
The possibility of discriminating the statistics of a thermal bath using indirect measurements performed on quantum probes is presented. The scheme relies on the fact that, when weakly coupled with the environment of interest, the transient evolution of the probe toward its final thermal configuration, is strongly affected by the fermionic or bosonic nature of the bath excitations. Using figures of merit taken from quantum metrology such as the Holevo-Helstrom probability of error and the Quantum Chernoff bound, we discuss how to achieve the greatest precision in this statistics tagging procedure, analyzing different models of probes and different initial preparations and by optimizing over the time of exposure of the probe.
Spin bath polarization is the key to enhancing the sensitivity of quantum sensing and information processing. Significant effort has been invested in identifying the consequences of quantumness and its control for spin-bath polarization. Here, by contrast, we focus on the adverse role of quantum correlations (entanglement) in a spin bath that can impede its cooling in many realistic scenarios. We propose to remove this impediment by modified cooling schemes, incorporating probe-induced disentanglement via alternating, non-commuting probe-bath interactions, so as to suppress the buildup of quantum correlations in the bath. The resulting bath polarization is thereby exponentially enhanced. The underlying thermodynamic principles have far-reaching implications for quantum technological applications
Heat-Bath Algorithmic cooling (HBAC) techniques provide ways to selectively enhance the polarization of target quantum subsystems. However, the cooling in these techniques are bounded. Here we report the first experimental observation of the HBAC cooling bound. We use HBAC to hyperpolarize nuclear spins in diamond. Using two carbon nuclear spins as the source of polarization (reset) and the 14N nuclear spin as the computation bit, we demonstrate that repeating a single cooling step increases the polarization beyond the initial reset polarization and reaches the cooling limit of HBAC. We benchmark the performance of our experiment over a range of variable reset polarization. With the ability to polarize the reset spins to different initial polarizations, we envisage that the proposed model could serve as a test bed for studies on Quantum Thermodynamics.