Do you want to publish a course? Click here

Effects of system-bath entanglement on the performance of light-harvesting systems: A quantum heat engine perspective

66   0   0.0 ( 0 )
 Added by Dazhi Xu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the ground state. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus a wide range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency approaches the heat engine limit given by Scovil and Schultz-Dubois in Phys. Rew. Lett. 2, 262 (1959).



rate research

Read More

Light harvesting components of photosynthetic organisms are complex, coupled, many-body quantum systems, in which electronic coherence has recently been shown to survive for relatively long time scales despite the decohering effects of their environments. Within this context, we analyze entanglement in multi-chromophoric light harvesting complexes, and establish methods for quantification of entanglement by presenting necessary and sufficient conditions for entanglement and by deriving a measure of global entanglement. These methods are then applied to the Fenna-Matthews-Olson (FMO) protein to extract the initial state and temperature dependencies of entanglement. We show that while FMO in natural conditions largely contains bipartite entanglement between dimerized chromophores, a small amount of long-range and multipartite entanglement exists even at physiological temperatures. This constitutes the first rigorous quantification of entanglement in a biological system. Finally, we discuss the practical utilization of entanglement in densely packed molecular aggregates such as light harvesting complexes.
Several recent studies of energy transfer in photosynthetic light harvesting complexes have revealed a subtle interplay between coherent and decoherent dynamic contributions to the overall transfer efficiency in these open quantum systems. In this work we systematically investigate the impact of temporal and spatial correlations in environmental fluctuations on excitation transport in the Fenna-Matthews-Olson photosynthetic complex. We demonstrate that the exact nature of the correlations can have a large impact on the efficiency of light harvesting. In particular, we find that (i) spatial correlations can enhance coherences in the site basis while at the same time slowing transport, and (ii) the overall efficiency of transport is optimized at a finite temporal correlation that produces maximum overlap between the environmental power spectrum and the excitonic energy differences, which in turn results in enhanced driving of transitions between excitonic states.
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest in their study from both a fundamental perspective and in view of applications. One essential question is whether collective effects may help to carry enhancements over larger scales, when increasing the number of systems composing the working substance of the engine. Such enhancements may consider not only power and efficiency, that is its performance, but, additionally, its constancy, i.e. the stability of the engine with respect to unavoidable environmental fluctuations. We explore this issue by introducing a many-body quantum heat engine model composed by spin pairs working in continuous operation. We study how power, efficiency and constancy scale with the number of spins composing the engine, and obtain analytical expressions in the macroscopic limit. Our results predict power enhancements, both in finite-size and macroscopic cases, for a broad range of system parameters and temperatures, without compromising the engine efficiency, as well as coherence-enhanced constancy for large but finite sizes. We also discuss these quantities in connection to Thermodynamic Uncertainty Relations (TUR).
Hybrid quantum systems aim at combining the advantages of different physical systems and to produce novel quantum devices. In particular, the hybrid combination of superconducting circuits and spins in solid-state crystals is a versatile platform to explore many quantum electrodynamics problems. Recently, the remote coupling of nitrogen-vacancy center spins in diamond via a superconducting bus was demonstrated. However, a rigorous experimental test of the quantum nature of this hybrid system and in particular entanglement is still missing. We review the theoretical ideas to generate and detect entanglement, and present our own scheme to achieve this.
The thermodynamic properties of quantum heat engines are stochastic owing to the presence of thermal and quantum fluctuations. We here experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Otto cycle. We first study the correlations between work and heat within a cycle by extracting their joint distribution for different driving times. We show that near perfect anticorrelation, corresponding to the tight-coupling condition, can be achieved. In this limit, the reconstructed efficiency distribution is peaked at the macroscopic efficiency and fluctuations are strongly suppressed. We further test the second law in the form of a joint fluctuation relation for work and heat. Our results characterize the statistical features of a small-scale thermal machine in the quantum domain and provide means to control them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا