Do you want to publish a course? Click here

Quantum Max-flow/Min-cut

144   0   0.0 ( 0 )
 Added by Shawn X. Cui
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network, and more specifically, as a linear map from the input space to the output space. The quantum max flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.



rate research

Read More

In this note we discuss the geometry of matrix product states with periodic boundary conditions and provide three infinite sequences of examples where the quantum max-flow is strictly less than the quantum min-cut. In the first we fix the underlying graph to be a 4-cycle and verify a prediction of Hastings that inequality occurs for infinitely many bond dimensions. In the second we generalize this result to a 2d-cycle. In the third we show that the 2d-cycle with periodic boundary conditions gives inequality for all d when all bond dimensions equal two, namely a gap of at least 2^{d-2} between the quantum max-flow and the quantum min-cut.
111 - Hongpeng Sun , Xuecheng Tai , 2020
The Potts model has many applications. It is equivalent to some min-cut and max-flow models. Primal-dual algorithms have been used to solve these problems. Due to the special structure of the models, convergence proof is still a difficult problem. In this work, we developed two novel, preconditioned, and over-relaxed alternating direction methods of multipliers (ADMM) with convergence guarantee for these models. Using the proposed preconditioners or block preconditioners, we get accelerations with the over-relaxation variants of preconditioned ADMM. The preconditioned and over-relaxed Douglas-Rachford splitting methods are also considered for the Potts model. Our framework can handle both the two-labeling or multi-labeling problems with appropriate block preconditioners based on Eckstein-Bertsekas and Fortin-Glowinski splitting techniques.
The max-flow and max-coflow problem on directed graphs is studied in the common generalization to regular spaces, i.e., to kernels or row spaces of totally unimodular matrices. Exhibiting a submodular structure of the family of paths within this model we generalize the Edmonds-Karp variant of the classical Ford-Fulkerson method and show that the number of augmentations is quadratically bounded if augmentations are chosen along shortest possible augmenting paths.
We present a bounded-error quantum algorithm for evaluating Min-Max trees. For a tree of size N our algorithm makes N^{1/2+o(1)} comparison queries, which is close to the optimal complexity for this problem.
The Ising antiferromagnet is an important statistical physics model with close connections to the {sc Max Cut} problem. Combining spatial mixing arguments with the method of moments and the interpolation method, we pinpoint the replica symmetry breaking phase transition predicted by physicists. Additionally, we rigorously establish upper bounds on the {sc Max Cut} of random regular graphs predicted by Zdeborova and Boettcher [Journal of Statistical Mechanics 2010]. As an application we prove that the information-theoretic threshold of the disassortative stochastic block model on random regular graphs coincides with the Kesten-Stigum bound.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا