No Arabic abstract
The newly discovered superconductors A2Cr3As3 (A = K, Rb, Cs), with a quasi-one-dimensional crystal structure have attracted considerable interest. The crystal structure consists of double-walled tubes of [Cr3As3]^(2-) that extend along the c-axis. Previously we reported measurements of the change in London penetration depth of polycrystalline samples of K2Cr3As3 using a tunnel diode oscillator based technique, which show a linear temperature dependence at low temperatures, giving evidence for line nodes in the superconducting gap. Here we report similar measurements of the penetration depth for polycrystalline Rb2Cr3As3 and several single crystals of K2Cr3As3, prepared by two different research groups. The single crystal measurements show similar behavior to polycrystalline samples down to 0.9-1.2 K, where a downturn is observed in the frequency shift for all single crystal samples. These results give further evidence for nodal superconductivity in K2Cr3As3, which indicates that the superconducting pairing state is unconventional. The different low temperature behavior observed in samples which have deteriorated after being exposed to air, emphasises that it is necessary to properly handle the samples prior to being measured because the A2Cr3As3 compounds are extremely air sensitive and evidence for nodal superconductivity from penetration depth measurements is only observed in the samples which display a sharp superconducting transition. Therefore further work is required to improve the quality of single crystals and to identify the origin of the downturn.
We have measured the magnetic penetration depth of the recently discovered binary superconductor MgB_2 using muon spin rotation and low field $ac$-susceptibility. From the damping of the muon precession signal we find the penetration depth at zero temperature is about 85nm. The low temperature penetration depth shows a quadratic temperature dependence, indicating the presence of nodes in the superconducting energy gap.
The effective superconducting penetration depth measured in the vortex state of PrOs4Sb12 using transverse-field muon spin rotation (TF-muSR) exhibits an activated temperature dependence at low temperatures, consistent with a nonzero gap for quasiparticle excitations. In contrast, Meissner-state radiofrequency (rf) inductive measurements of the penetration depth yield a T^2 temperature dependence, suggestive of point nodes in the gap. A scenario based on the recent discovery of extreme two-band superconductivity in PrOs4Sb12 is proposed to resolve this difference. In this picture a large difference between large- and small-gap coherence lengths renders the field distribution in the vortex state controlled mainly by supercurrents from a fully-gapped large-gap band. In zero field all bands contribute, yielding a stronger temperature dependence to the rf inductive measurements.
We have performed $^{75}$As nuclear magnetic resonance (NMR) Knight shift measurements on single crystals of NaFe$_{0.975}$Co$_{0.025}$As to show that its superconductivity is a spin-paired, singlet state consistent with predictions of the weak-coupling BCS theory. We use a spectator nucleus, $^{23}$Na, uncoupled from the superconducting condensate, to determine the diamagnetic magnetization and to correct for its effect on the $^{75}$As NMR spectra. The resulting temperature dependence of the spin susceptibility follows the Yosida function as predicted by BCS for an isotropic, single-valued energy gap. Additionally, we have analyzed the $^{23}$Na spectra that become significantly broadened by vortices to obtain the superconducting penetration depth as a function of temperature with $lambda_{ab}(0) = 5,327 pm$ 78$,AA$.
The London penetration depth $lambda$ is the basic length scale for electromagnetic behavior in a superconductor. Precise measurements of $lambda$ as a function of temperature, field, and impurity scattering have been instrumental in revealing the nature of the order parameter and pairing interactions in a variety of superconductors discovered over the past decades. Here we recount our development of the tunnel-diode resonator technique to measure $lambda$ as a function of temperature and field in small single crystal samples. We discuss the principles and applications of this technique to study unconventional superconductivity in the copper oxides and other materials such as iron-based superconductors. The technique has now been employed by several groups worldwide as a precision measurement tool for the exploration of new superconductors.
The penetration depth is calculated over the entire doping range of the cuprate phase diagram with emphasis on the underdoped regime. Pseudogap formation on approaching the Mott transition, for doping below a quantum critical point, is described within a model based on the resonating valence bond spin liquid which provides an ansatz for the coherent piece of the Greens function. Fermi surface reconstruction, which is an essential element of the model, has a strong effect on the superfluid density at T=0 producing a sharp drop in magnitude, but does not change the slope of the linear low temperature variation. Comparison with recent data on Bi-based cuprates provides validation of the theory and shows that the effects of correlations, captured by Gutzwiller factors, are essential for a qualitative understanding of the data. We find that the Ferrell-Glover-Tinkham sum rule still holds and we compare our results with those for the Fermi arc and the nodal liquid models.