Do you want to publish a course? Click here

Dynamical quenching of tunneling in molecular magnets

98   0   0.0 ( 0 )
 Added by Roberto Troncoso
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect. In particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of the Schrodingers equation.



rate research

Read More

The nuclear spin-mediated quantum relaxation of ensembles of tunneling magnetic molecules causes a hole to appear in the distribution of internal fields in the system. The form of this hole, and its time evolution, are studied using Monte Carlo simulations. It is shown that the line-shape of the tunneling hole in a weakly polarised sample must have a Lorentzian lineshape- the short-time half-width $xi_o$ in all experiments done so far should be $sim E_0$, the half-width of the nuclear spin multiplet. After a time $tau_o$, the single molecule tunneling relaxation time, the hole width begins to increase rapidly. In initially polarised samples the disintegration of resonant tunneling surfaces is found to be very fast.
Quantum tunneling dominates the low temperature magnetization dynamics in molecular magnets and presents features that are strongly system dependent. The current discussion is focused on the terbium(III) bis(phtalocyanine) ([TbPc$_2$]$^{-1}$) complex, that should serve as a prototypical case for lanthanide molecular magnets. We analyze numerically the effect of non-axial interactions on the magnitude of the intrinsic tunnel splitting and show that usual suspects like the transverse ligand field and Zeeman interaction fail to explain the experimentally observed dynamics. We then propose through the nuclear quadrupolar interaction a viable mechanism that mixes, otherwise textit{almost} degenerate hyperfine states.
Reply to the Comment of J.J. Alonso and J.F. Fernandez on the paper Hole-digging in ensembles of tunneling molecular magnets of I.S. Tupitsyn, P.C.E. Stamp and N.V. Prokofev (Phys. Rev. B 69, 132406, (2004)).
115 - Myriam P. Sarachik 2013
The reversal of the magnetization of crystals of molecular magnets that have a large spin and high anisotropy barrier generally proceeds below the blocking temperature by quantum tunneling. This is manifested as a series of controlled steps in the hysteresis loops at resonant values of the magnetic field where energy levels on opposite sides of the barrier cross. An abrupt reversal of the magnetic moment of the entire crystal can occur instead by a process commonly referred to as a magnetic avalanche, where the molecular spins reverse along a deflagration front that travels through the sample at subsonic speed. In this chapter, we review experimental results obtained to date for magnetic deflagration in molecular nanomagnets.
Decoherence processes in crystals of molecular magnets are prototypical for interacting electronic spin systems. We analyze the Landau-Zener dynamics of the archetypical TbPc$_2$ complex diluted in a diamagnetic monocrystal. The dependence of the tunneling probability on the field sweep rate is evaluated in the framework of the recently proposed master equation in which the decoherence processes are described through a phenomenological Lindblad operator. Thus, we showcase low temperature magnetic measurements that complement resonant techniques in determining small tunnel splittings and dephasing times.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا