Do you want to publish a course? Click here

Cosmology from a gauge induced gravity

82   0   0.0 ( 0 )
 Added by Guilherme Sadovski
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with $SO(m,n)$ such that $m+n=5$ and $min{0,1,2}$ as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an Inonu-Wigner contraction in its infrared sector. As a consequence, the $SO(m,n)$ algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a $Lambda$CDM model. We argue that $SO(m,n)$ induced gravities are promising effective theories to describe the early phase of the universe.



rate research

Read More

107 - Qasem Exirifard 2014
We review and extend the Gauge Vectors-Tensor gravity: a covariant theory of gravity composed of a metric and gauge fields, leading to simple second order partial differential equations of motion, whose Newtonian and strong limits coincide to those of the Einsten-Hilbert action but the physics of its very weak fields should be identified through observation. We show that GVT is at least as dynamically stable as the Einstein-Hilbert gravity. It accommodates the MOND paradigm. We study its gravitational light deflection. We show that the post Newtonian parameter of $gamma$ vanishes in the MOND regime of GVT gravity. Since $Lambda$CDM assumes that $gamma=1$, this suggests to observationally measure the $gamma$ parameter in the weak regime of gravity as either a test for $Lambda$CDM or GVT models
I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological role of a vector field in the framework of a string/brane cosmological model. I will then present the resolution of the big bang singularity and the occurrence of an early era of accelerated expansion of a geometric origin, in the framework of group field theory condensate cosmology. I will then summarise results from an extended gravitational model based on non-commutative spectral geometry, a model that offers a purely geometric explanation for the standard model of particle physics.
We show that gravity and matter fields are generically entangled, as a consequence of the local Poincare symmetry. First, we present a general argument, applicable to any particular theory of quantum gravity with matter, by performing the analysis in the abstract nonperturbative canonical framework, demonstrating the nonseparability of the scalar constraint, thus promoting the entangled states as the physical ones. Also, within the covariant framework, we show explicitly that the Hartle-Hawking state in the Regge model of quantum gravity is necessarily entangled. Our result is potentially relevant for the quantum-to-classical transition, taken within the framework of the decoherence programme: due to the gauge symmetry requirements, the matter does not decohere, it is by default decohered by gravity. Generically, entanglement is a consequence of interaction. This new entanglement could potentially, in form of an effective interaction, bring about corrections to the weak equivalence principle, further confirming that spacetime as a smooth four-dimensional manifold is an emergent phenomenon. Finally, the existence of the gauge-protected entanglement between gravity and matter could be seen as a criterion for a plausible theory of quantum gravity, and in the case of perturbative quantisation approaches, a confirmation of the persistence of the manifestly broken gauge symmetry.
We make a critical review of the semiclassical interpretation of quantum cosmology and emphasise that it is not necessary to consider that a concept of time emerges only when the gravitational field is (semi)classical. We show that the usual results of the semiclassical interpretation, and its generalisation known as the Born-Oppenheimer approach to quantum cosmology, can be obtained by gauge fixing, both at the classical and quantum levels. By `gauge fixing we mean a particular choice of the time coordinate, which determines the arbitrary Lagrange multiplier that appears in Hamiltons equations. In the quantum theory, we adopt a tentative definition of the (Klein-Gordon) inner product, which is positive definite for solutions of the quantum constraint equation found via an iterative procedure that corresponds to a weak coupling expansion in powers of the inverse Planck mass. We conclude that the wave function should be interpreted as a state vector for both gravitational and matter degrees of freedom, the dynamics of which is unitary with respect to the chosen inner product and time variable.
The article communicates an alternative route to suffice the late-time acceleration considering a bulk viscous fluid with viscosity coefficient $zeta =zeta _{0}+ zeta _{1} H + zeta _{2} H^{2}$, where $zeta _{0}, zeta _{1}, zeta _{2}$ are constants in the framework of $f(R,T)$ modified gravity. We presume the $f(R,T)$ functional form to be $f=R+2alpha T$ where $alpha$ is a constant. We then solve the field equations for the Hubble Parameter and study the cosmological dynamics of kinematic variables such as deceleration, jerk, snap and lerk parameters as a function of cosmic time. We observe the deceleration parameter to be highly sensitive to $alpha$ and undergoes a signature flipping at around $tsim 10$ Gyrs for $alpha=-0.179$ which is favored by observations. The EoS parameter for our model assumes values close to $-1$ at $t_{0}=13.7$Gyrs which is in remarkable agreement with the latest Planck measurements. Next, we study the evolution of energy conditions and find that our model violate the Strong Energy Condition in order to explain the late-time cosmic acceleration. To understand the nature of dark energy mimicked by the bulk viscous baryonic fluid, we perform some geometrical diagnostics like the ${r,s}$ and ${r,q}$ plane. We found the model to mimic the nature of a Chaplygin gas type dark energy model at early times while a Quintessence type in distant future. Finally, we study the violation of continuity equation for our model and show that in order to explain the cosmic acceleration at the present epoch, energy-momentum must violate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا