Do you want to publish a course? Click here

Independence of Optical Absorption on Auger Ionization in Single-Walled Carbon Nanotubes Revealed by Ultrafast e-h Photodoping

48   0   0.0 ( 0 )
 Added by Mitchell Anderson
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Auger-ionized carriers in a one-dimensional semiconductor are predicted to result in a strong band-gap renormalization. Isolated single-walled carbon nanotubes (SWCNT) under high-intensity laser irradiation exhibit strong nonlinear photoluminescence (PL) due to exciton-exciton annihilation (EEA). The presence of exciton disassociation during the rapid Auger-ionization caused by EEA would lead to a strong nonlinear absorption. By simultaneously measuring SWCNT PL and optical absorption of isolated SWCNT clusters in the PL saturation regime, we give evidence that Auger-ionized excitons do not disassociate but remain bound.



rate research

Read More

318 - J. Kono , G. N. Ostojic , S. Zaric 2003
We present results of wavelength-dependent ultrafast pump-probe experiments on micelle-suspended single-walled carbon nanotubes. The linear absorption and photoluminescence spectra of the samples show a number of chirality-dependent peaks, and consequently, the pump-probe results sensitively depend on the wavelength. In the wavelength range corresponding to the second van Hove singularities (VHSs), we observe sub-picosecond decays, as has been seen in previous pump-probe studies. We ascribe these ultrafast decays to intraband carrier relaxation. On the other hand, in the wavelength range corresponding to the first VHSs, we observe two distinct regimes in ultrafast carrier relaxation: fast (0.3-1.2 ps) and slow (5-20 ps). The slow component, which has not been observed previously, is resonantly enhanced whenever the pump photon energy resonates with an interband absorption peak, and we attribute it to radiative carrier recombination. Finally, the slow component is dependent on the pH of the solution, which suggests an important role played by H$^+$ ions surrounding the nanotubes.
High-field magneto-optical spectroscopy was conducted on highly-selected chiral (6,5) specific single-walled carbon nanotubes. Spectra of phonon sidebands in both 1st and 2nd sub-bands were observed to be unchanged by the application of an external magnetic field up to 52 T. Our analyses led to the conclusion that both phonon sidebands in respective sub-band originate from the dark K-momentum singlet (D-K-S) excitons. Moreover, while the relative ordering between the bandedge bright exciton and its zero-momentum anti-bonding counterpart was found to be opposite for the 1st and 2nd sub-bands, the relative ordering between the D-K-S exciton and the band-edge bright exciton was clarified to be the same for both sub-bands. Energy of these D-K-S excitons was estimated to be ~ 21.5 and ~ 37.3 meV above the band-edge bright exciton for the 1st and 2nd sub-bands, respectively.
221 - Xi Chen , Bairen Zhu , Anmin Zhang 2014
We report experimental measurements of electronic Raman scattering under resonant conditions by electrons in individual single-walled carbon nanotubes (SWNTs). The inelastic Raman scattering at low frequency range reveals a single particle excitation feature and the dispersion of electronic structure around the center of Brillouin zone of a semiconducting SWNT (14, 13) is extracted.
We report a femtosecond mid-infrared study of the broadband low-energy response of individually separated (6,5) and (7,5) single-walled carbon nanotubes. Strong photoinduced absorption is observed around 200 meV, whose transition energy, oscillator strength, resonant chirality enhancement and dynamics manifest the observation of quasi-1D intra-excitonic transitions. A model of the nanotube 1s-2p cross section agrees well with the signal amplitudes. Our study further reveals saturation of the photoinduced absorption with increasing phase-space filling of the correlated e-h pairs.
93 - Z. Yu , P.J. Burke 2005
The dynamical conductance of electrically contacted single-walled carbon nanotubes is measured from dc to 10 GHz as a function of source-drain voltage in both the low-field and high-field limits. The ac conductance of the nanotube itself is found to be equal to the dc conductance over the frequency range studied for tubes in both the ballistic and diffusive limit. This clearly demonstrates that nanotubes can carry high-frequency currents at least as well as dc currents over a wide range of operating conditions. Although a detailed theoretical explanation is still lacking, we present a phenomenological model of the ac impedance of a carbon nanotube in the presence of scattering that is consistent with these results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا