Do you want to publish a course? Click here

Galaxy Strategy for LIGO-Virgo Gravitational Wave Counterpart Searches

106   0   0.0 ( 0 )
 Added by John K. Cannizzo
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we continue a line of inquiry begun in Kanner et al. which detailed a strategy for utilizing telescopes with narrow fields of view, such as the Swift X-ray Telescope (XRT), to localize gravity wave (GW) triggers from LIGO/Virgo. If one considers the brightest galaxies that produce ~50% of the light, then the number of galaxies inside typical GW error boxes will be several tens. We have found that this result applies both in the early years of Advanced LIGO when the range is small and the error boxes large, and in the later years when the error boxes will be small and the range large. This strategy has the beneficial property of reducing the number of telescope pointings by a factor 10 to 100 compared with tiling the entire error box. Additional galaxy count reduction will come from a GW rapid distance estimate which will restrict the radial slice in search volume. Combining the bright galaxy strategy with a convolution based on anticipated GW localizations, we find that the searches can be restricted to about 18+/-5 galaxies for 2015, about 23+/-4 for 2017, and about 11+/-2 for 2020. This assumes a distance localization at or near the putative NS-NS merger range for each target year, and these totals are integrated out to the range. Integrating out to the horizon would roughly double the totals. For nearer localizations the totals would decrease. The galaxy strategy we present in this work will enable numerous sensitive optical and X-ray telescopes with small fields of view to participate meaningfully in searches wherein the prospects for rapidly fading afterglow place a premium on a fast response time.



rate research

Read More

Searches for electromagnetic counterparts of gravitational-wave signals have redoubled since the first detection in 2017 of a binary neutron star merger with a gamma-ray burst, optical/infrared kilonova, and panchromatic afterglow. Yet, one LIGO/Virgo observing run later, there has not yet been a second, secure identification of an electromagnetic counterpart. This is not surprising given that the localization uncertainties of events in LIGO and Virgos third observing run, O3, were much larger than predicted. We explain this by showing that improvements in data analysis that now allow LIGO/Virgo to detect weaker and hence more poorly-localized events have increased the overall number of detections, of which well-localized, gold-plated events make a smaller proportion overall. We present simulations of the next two LIGO/Virgo/KAGRA observing runs, O4 and O5, that are grounded in the statistics of O3 public alerts. To illustrate the significant impact that the updated predictions can have, we study the follow-up strategy for the Zwicky Transient Facility. Realistic and timely forecasting of gravitational-wave localization accuracy is paramount given the large commitments of telescope time and the need to prioritize which events are followed up. We include a data release of our simulated localizations as a public proposal planning resource for astronomers.
Recently we have witnessed the first multi-messenger detection of colliding neutron stars through Gravitational Waves (GWs) and Electromagnetic (EM) waves (GW170817), thanks to the joint efforts of LIGO/Virgo and Space/Ground-based telescopes. In this paper, we report on the RATIR followup observation strategies and show the results for the trigger G194575. This trigger is not of astrophysical interest; however, is of great interests to the robust design of a followup engine to explore large sky error regions. We discuss the development of an image-subtraction pipeline for the 6-color, optical/NIR imaging camera RATIR. Considering a two band ($i$ and $r$) campaign in the Fall of 2015, we find that the requirement of simultaneous detection in both bands leads to a factor $sim$10 reduction in false alarm rate, which can be further reduced using additional bands. We also show that the performance of our proposed algorithm is robust to fluctuating observing conditions, maintaining a low false alarm rate with a modest decrease in system efficiency that can be overcome utilizing repeat visits. Expanding our pipeline to search for either optical or NIR detections (3 or more bands), considering separately the optical $riZ$ and NIR $YJH$ bands, should result in a false alarm rate $approx 1%$ and an efficiency $approx 90%$. RATIRs simultaneous optical/NIR observations are expected to yield about one candidate transient in the vast 100 $mathrm{deg^2}$ LIGO error region for prioritized followup with larger aperture telescopes.
We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgos GWTC-2 catalog using IceCubes neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event.
Long-lived gravitational wave (GW) transients have received interest in the last decade, as the sensitivity of LIGO and Virgo increases. Such signals, lasting between 10 and 1000s, can come from a variety of sources, including accretion disk instabilities around black holes, binary neutron stars post-merger, core-collapse supernovae, non-axisymmetric deformations in isolated neutron stars, and magnetar giant flares. Given the large parameter space and the lack of precisely modeled waveforms, searches must rely on robust detection algorithms, which make few or no assumptions on the nature of the signal. Here we present a new data analysis pipeline to search for long-lived transient GW signals, based on an excess cross-power statistic computed over a network of detectors. It uses a hierarchical strategy that allows to estimate the background quickly and implements several features aimed to increase detection sensitivity by 30% for a wide range of signal morphology compared to an older implementation. We also report upper limits on the GW energy emitted from a search conducted with the pipeline for GW emission around a sample of nearby magnetar giant flares, and discuss detection potential of such sources with second and third-generation detectors.
We present the results from a search for the electromagnetic counterpart of the LIGO/Virgo event S190510g using the Dark Energy Camera (DECam). S190510g is a binary neutron star (BNS) merger candidate of moderate significance detected at a distance of 227$pm$92 Mpc and localized within an area of 31 (1166) square degrees at 50% (90%) confidence. While this event was later classified as likely non-astrophysical in nature within 30 hours of the event, our short latency search and discovery pipeline identified 11 counterpart candidates, all of which appear consistent with supernovae following offline analysis and spectroscopy by other instruments. Later reprocessing of the images enabled the recovery of 6 more candidates. Additionally, we implement our candidate selection procedure on simulated kilonovae and supernovae under DECam observing conditions (e.g., seeing, exposure time) with the intent of quantifying our search efficiency and making informed decisions on observing strategy for future similar events. This is the first BNS counterpart search to employ a comprehensive simulation-based efficiency study. We find that using the current follow-up strategy, there would need to be 19 events similar to S190510g for us to have a 99% chance of detecting an optical counterpart, assuming a GW170817-like kilonova. We further conclude that optimization of observing plans, which should include preference for deeper images over multiple color information, could result in up to a factor of 1.5 reduction in the total number of followups needed for discovery.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا