Do you want to publish a course? Click here

Chern-Simons Improved Hamiltonians for Strings in Three Space Dimensions

72   0   0.0 ( 0 )
 Added by Dmitry Melnikov
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Frenet equation governs the extrinsic geometry of a string in three-dimensional ambient space in terms of the curvature and torsion, which are both scalar functions under string reparameterisations. The description engages a local SO(2) gauge symmetry, which emerges from the invariance of the extrinsic string geometry under local frame rotations around the tangent vector. Here we inquire how to construct the most general SO(2) gauge invariant Hamiltonian of strings, in terms of the curvature and torsion. The construction instructs us to introduce a long-range (self-) interaction between strings, which is mediated by a three dimensional bulk gauge field with a Chern-Simons self-interaction. The results support the proposal that fractional statistics should be prevalent in the case of three dimensional string-like configurations.



rate research

Read More

We determine the dimension of the moduli space of non-Abelian vortices in Yang-Mills-Chern-Simons-Higgs theory in 2+1 dimensions for gauge groups $G=U(1)times G$ with $G$ being an arbitrary semi-simple group. The calculation is carried out using a Callias-type index theorem, the moduli matrix approach and a D-brane setup in Type IIB string theory. We prove that the index theorem gives the number of zeromodes or moduli of the non-Abelian vortices, extend the moduli matrix approach to the Yang-Mills-Chern-Simons-Higgs theory and finally derive the effective Lagrangian of Collie and Tong using string theory.
We consider the $U(1)$ Chern-Simons gauge theory defined in a general closed oriented 3-manifold $M$; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The nonperturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent $U(1)$ principal bundles over $M$; the different sectors of the configuration space are labelled by the elements of the first homology group of $M$ and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the extent of the nonperturbative contributions to the mean values. The functional integration is achieved in any 3-manifold $M$, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin-Turaev surgery invariants.
We study resurgence properties of partition function of SU(2) Chern-Simons theory (WRT invariant) on closed three-manifolds. We check explicitly that in various examples Borel transforms of asymptotic expansions posses expected analytic properties. In examples that we study we observe that contribution of irreducible flat connections to the path integral can be recovered from asymptotic expansions around abelian flat connections. We also discuss connection to Floer instanton moduli spaces, disk instantons in 2d sigma models, and length spectra of complex geodesics on the A-polynomial curve.
215 - Luca Cassia , Maxim Zabzine 2021
We consider the matrix model of $U(N)$ refined Chern-Simons theory on $S^3$ for the unknot. We derive a $q$-difference operator whose insertion in the matrix integral reproduces an infinite set of Ward identities which we interpret as $q$-Virasoro constraints. The constraints are rewritten as difference equations for the generating function of Wilson loop expectation values which we solve as a recursion for the correlators of the model. The solution is repackaged in the form of superintegrability formulas for Macdonald polynomials. Additionally, we derive an equivalent $q$-difference operator for a similar refinement of ABJ theory and show that the corresponding $q$-Virasoro constraints are equal to those of refined Chern-Simons for a gauge super-group $U(N|M)$. Our equations and solutions are manifestly symmetric under Langlands duality $qleftrightarrow t^{-1}$ which correctly reproduces 3d Seiberg duality when $q$ is a specific root of unity.
By using the Hamilton-Jacobi [$HJ$] framework the higher-order Maxwell-Chern-Simons theory is analyzed. The complete set of $HJ$ Hamiltonians and a generalized $HJ$ differential are reported, from which all symmetries of the theory are identified. In addition, we complete our study by performing the higher order Gitman-Lyakhovich-Tyutin [$GLT$] framework and compare the results of both formalisms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا